MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgra0v Structured version   Visualization version   GIF version

Theorem cusgra0v 25989
Description: A graph with no vertices (and therefore no edges) is complete. (Contributed by Alexander van der Vekens, 13-Oct-2017.)
Assertion
Ref Expression
cusgra0v ∅ ComplUSGrph ∅

Proof of Theorem cusgra0v
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4718 . 2 ∅ ∈ V
2 usgra0 25899 . . . 4 (∅ ∈ V → ∅ USGrph ∅)
31, 2mp1i 13 . . 3 ((∅ ∈ V ∧ ∅ ∈ V) → ∅ USGrph ∅)
4 ral0 4028 . . . 4 𝑘 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑘}){𝑛, 𝑘} ∈ ran ∅
54a1i 11 . . 3 ((∅ ∈ V ∧ ∅ ∈ V) → ∀𝑘 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑘}){𝑛, 𝑘} ∈ ran ∅)
6 iscusgra 25985 . . 3 ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ComplUSGrph ∅ ↔ (∅ USGrph ∅ ∧ ∀𝑘 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑘}){𝑛, 𝑘} ∈ ran ∅)))
73, 5, 6mpbir2and 959 . 2 ((∅ ∈ V ∧ ∅ ∈ V) → ∅ ComplUSGrph ∅)
81, 1, 7mp2an 704 1 ∅ ComplUSGrph ∅
Colors of variables: wff setvar class
Syntax hints:  wa 383  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  c0 3874  {csn 4125  {cpr 4127   class class class wbr 4583  ran crn 5039   USGrph cusg 25859   ComplUSGrph ccusgra 25947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-usgra 25862  df-cusgra 25950
This theorem is referenced by:  cusgra1v  25990
  Copyright terms: Public domain W3C validator