Step | Hyp | Ref
| Expression |
1 | | curfval.g |
. 2
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
2 | | df-curf 16677 |
. . . 4
⊢
curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑒) / 𝑐⦌⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → curryF =
(𝑒 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑒) / 𝑐⦌⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉)) |
4 | | fvex 6113 |
. . . . 5
⊢
(1st ‘𝑒) ∈ V |
5 | 4 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → (1st ‘𝑒) ∈ V) |
6 | | simprl 790 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → 𝑒 = 〈𝐶, 𝐷〉) |
7 | 6 | fveq2d 6107 |
. . . . 5
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → (1st ‘𝑒) = (1st
‘〈𝐶, 𝐷〉)) |
8 | | curfval.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ Cat) |
9 | | curfval.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ Cat) |
10 | | op1stg 7071 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) →
(1st ‘〈𝐶, 𝐷〉) = 𝐶) |
11 | 8, 9, 10 | syl2anc 691 |
. . . . . 6
⊢ (𝜑 → (1st
‘〈𝐶, 𝐷〉) = 𝐶) |
12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) |
13 | 7, 12 | eqtrd 2644 |
. . . 4
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → (1st ‘𝑒) = 𝐶) |
14 | | fvex 6113 |
. . . . . 6
⊢
(2nd ‘𝑒) ∈ V |
15 | 14 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘𝑒) ∈ V) |
16 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → 𝑒 = 〈𝐶, 𝐷〉) |
17 | 16 | fveq2d 6107 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘𝑒) = (2nd
‘〈𝐶, 𝐷〉)) |
18 | | op2ndg 7072 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) →
(2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
19 | 8, 9, 18 | syl2anc 691 |
. . . . . . 7
⊢ (𝜑 → (2nd
‘〈𝐶, 𝐷〉) = 𝐷) |
20 | 19 | ad2antrr 758 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
21 | 17, 20 | eqtrd 2644 |
. . . . 5
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → (2nd ‘𝑒) = 𝐷) |
22 | | simplr 788 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶) |
23 | 22 | fveq2d 6107 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶)) |
24 | | curfval.a |
. . . . . . . 8
⊢ 𝐴 = (Base‘𝐶) |
25 | 23, 24 | syl6eqr 2662 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑐) = 𝐴) |
26 | | simpr 476 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
27 | 26 | fveq2d 6107 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷)) |
28 | | curfval.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐷) |
29 | 27, 28 | syl6eqr 2662 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Base‘𝑑) = 𝐵) |
30 | | simprr 792 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) |
31 | 30 | ad2antrr 758 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑓 = 𝐹) |
32 | 31 | fveq2d 6107 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (1st ‘𝑓) = (1st ‘𝐹)) |
33 | 32 | oveqd 6566 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(1st ‘𝑓)𝑦) = (𝑥(1st ‘𝐹)𝑦)) |
34 | 29, 33 | mpteq12dv 4663 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)) = (𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦))) |
35 | 26 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = (Hom ‘𝐷)) |
36 | | curfval.j |
. . . . . . . . . . . 12
⊢ 𝐽 = (Hom ‘𝐷) |
37 | 35, 36 | syl6eqr 2662 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑑) = 𝐽) |
38 | 37 | oveqd 6566 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦(Hom ‘𝑑)𝑧) = (𝑦𝐽𝑧)) |
39 | 31 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (2nd ‘𝑓) = (2nd ‘𝐹)) |
40 | 39 | oveqd 6566 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉) = (〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)) |
41 | 22 | fveq2d 6107 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = (Id‘𝐶)) |
42 | | curfval.1 |
. . . . . . . . . . . . 13
⊢ 1 =
(Id‘𝐶) |
43 | 41, 42 | syl6eqr 2662 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑐) = 1 ) |
44 | 43 | fveq1d 6105 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑐)‘𝑥) = ( 1 ‘𝑥)) |
45 | | eqidd 2611 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑔 = 𝑔) |
46 | 40, 44, 45 | oveq123d 6570 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔) = (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)) |
47 | 38, 46 | mpteq12dv 4663 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔))) |
48 | 29, 29, 47 | mpt2eq123dv 6615 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔))) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))) |
49 | 34, 48 | opeq12d 4348 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉 = 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉) |
50 | 25, 49 | mpteq12dv 4663 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) |
51 | 22 | fveq2d 6107 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = (Hom ‘𝐶)) |
52 | | curfval.h |
. . . . . . . . . 10
⊢ 𝐻 = (Hom ‘𝐶) |
53 | 51, 52 | syl6eqr 2662 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Hom ‘𝑐) = 𝐻) |
54 | 53 | oveqd 6566 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥(Hom ‘𝑐)𝑦) = (𝑥𝐻𝑦)) |
55 | 39 | oveqd 6566 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉) = (〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)) |
56 | 26 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = (Id‘𝐷)) |
57 | | curfval.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (Id‘𝐷) |
58 | 56, 57 | syl6eqr 2662 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (Id‘𝑑) = 𝐼) |
59 | 58 | fveq1d 6105 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((Id‘𝑑)‘𝑧) = (𝐼‘𝑧)) |
60 | 55, 45, 59 | oveq123d 6570 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)) = (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧))) |
61 | 29, 60 | mpteq12dv 4663 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧))) = (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))) |
62 | 54, 61 | mpteq12dv 4663 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))) = (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧))))) |
63 | 25, 25, 62 | mpt2eq123dv 6615 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧))))) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))) |
64 | 50, 63 | opeq12d 4348 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |
65 | 15, 21, 64 | csbied2 3527 |
. . . 4
⊢ (((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) ∧ 𝑐 = 𝐶) → ⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |
66 | 5, 13, 65 | csbied2 3527 |
. . 3
⊢ ((𝜑 ∧ (𝑒 = 〈𝐶, 𝐷〉 ∧ 𝑓 = 𝐹)) → ⦋(1st
‘𝑒) / 𝑐⦌⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |
67 | | opex 4859 |
. . . 4
⊢
〈𝐶, 𝐷〉 ∈ V |
68 | 67 | a1i 11 |
. . 3
⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ V) |
69 | | curfval.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
70 | | elex 3185 |
. . . 4
⊢ (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → 𝐹 ∈ V) |
71 | 69, 70 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
72 | | opex 4859 |
. . . 4
⊢
〈(𝑥 ∈
𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉 ∈ V |
73 | 72 | a1i 11 |
. . 3
⊢ (𝜑 → 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉 ∈ V) |
74 | 3, 66, 68, 71, 73 | ovmpt2d 6686 |
. 2
⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF 𝐹) = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |
75 | 1, 74 | syl5eq 2656 |
1
⊢ (𝜑 → 𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) |