MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfpropd Structured version   Visualization version   GIF version

Theorem curfpropd 16696
Description: If two categories have the same set of objects, morphisms, and compositions, then they curry the same functor to the same result. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
curfpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
curfpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
curfpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
curfpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
curfpropd.a (𝜑𝐴 ∈ Cat)
curfpropd.b (𝜑𝐵 ∈ Cat)
curfpropd.c (𝜑𝐶 ∈ Cat)
curfpropd.d (𝜑𝐷 ∈ Cat)
curfpropd.f (𝜑𝐹 ∈ ((𝐴 ×c 𝐶) Func 𝐸))
Assertion
Ref Expression
curfpropd (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹))

Proof of Theorem curfpropd
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
21homfeqbas 16179 . . . 4 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
3 curfpropd.3 . . . . . . . 8 (𝜑 → (Homf𝐶) = (Homf𝐷))
43homfeqbas 16179 . . . . . . 7 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
54adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐴)) → (Base‘𝐶) = (Base‘𝐷))
65mpteq1d 4666 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐴)) → (𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)))
75adantr 480 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
8 eqid 2610 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2610 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2610 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
113ad2antrr 758 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (Homf𝐶) = (Homf𝐷))
12 simprl 790 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
13 simprr 792 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶))
148, 9, 10, 11, 12, 13homfeqval 16180 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐷)𝑧))
15 curfpropd.2 . . . . . . . . . . 11 (𝜑 → (compf𝐴) = (compf𝐵))
16 curfpropd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Cat)
17 curfpropd.b . . . . . . . . . . 11 (𝜑𝐵 ∈ Cat)
181, 15, 16, 17cidpropd 16193 . . . . . . . . . 10 (𝜑 → (Id‘𝐴) = (Id‘𝐵))
1918ad2antrr 758 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (Id‘𝐴) = (Id‘𝐵))
2019fveq1d 6105 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ((Id‘𝐴)‘𝑥) = ((Id‘𝐵)‘𝑥))
2120oveq1d 6564 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))
2214, 21mpteq12dv 4663 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))
235, 7, 22mpt2eq123dva 6614 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐴)) → (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))))
246, 23opeq12d 4348 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐴)) → ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)
252, 24mpteq12dva 4662 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
262adantr 480 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
27 eqid 2610 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
28 eqid 2610 . . . . . 6 (Hom ‘𝐴) = (Hom ‘𝐴)
29 eqid 2610 . . . . . 6 (Hom ‘𝐵) = (Hom ‘𝐵)
301adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (Homf𝐴) = (Homf𝐵))
31 simprl 790 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝐴))
32 simprr 792 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
3327, 28, 29, 30, 31, 32homfeqval 16180 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
344ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Base‘𝐶) = (Base‘𝐷))
35 curfpropd.4 . . . . . . . . . 10 (𝜑 → (compf𝐶) = (compf𝐷))
36 curfpropd.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
37 curfpropd.d . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
383, 35, 36, 37cidpropd 16193 . . . . . . . . 9 (𝜑 → (Id‘𝐶) = (Id‘𝐷))
3938ad3antrrr 762 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → (Id‘𝐶) = (Id‘𝐷))
4039fveq1d 6105 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑧) = ((Id‘𝐷)‘𝑧))
4140oveq2d 6565 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)) = (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))
4234, 41mpteq12dva 4662 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))
4333, 42mpteq12dva 4662 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))) = (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
442, 26, 43mpt2eq123dva 6614 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧))))) = (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
4525, 44opeq12d 4348 . 2 (𝜑 → ⟨(𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))))⟩ = ⟨(𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
46 eqid 2610 . . 3 (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐴, 𝐶⟩ curryF 𝐹)
47 curfpropd.f . . 3 (𝜑𝐹 ∈ ((𝐴 ×c 𝐶) Func 𝐸))
48 eqid 2610 . . 3 (Id‘𝐴) = (Id‘𝐴)
49 eqid 2610 . . 3 (Id‘𝐶) = (Id‘𝐶)
5046, 27, 16, 36, 47, 8, 9, 48, 28, 49curfval 16686 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))))⟩)
51 eqid 2610 . . 3 (⟨𝐵, 𝐷⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹)
52 eqid 2610 . . 3 (Base‘𝐵) = (Base‘𝐵)
531, 15, 3, 35, 16, 17, 36, 37xpcpropd 16671 . . . . 5 (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷))
5453oveq1d 6564 . . . 4 (𝜑 → ((𝐴 ×c 𝐶) Func 𝐸) = ((𝐵 ×c 𝐷) Func 𝐸))
5547, 54eleqtrd 2690 . . 3 (𝜑𝐹 ∈ ((𝐵 ×c 𝐷) Func 𝐸))
56 eqid 2610 . . 3 (Base‘𝐷) = (Base‘𝐷)
57 eqid 2610 . . 3 (Id‘𝐵) = (Id‘𝐵)
58 eqid 2610 . . 3 (Id‘𝐷) = (Id‘𝐷)
5951, 52, 17, 37, 55, 56, 10, 57, 29, 58curfval 16686 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
6045, 50, 593eqtr4d 2654 1 (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cop 4131  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Basecbs 15695  Hom chom 15779  Catccat 16148  Idccid 16149  Homf chomf 16150  compfccomf 16151   Func cfunc 16337   ×c cxpc 16631   curryF ccurf 16673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-cat 16152  df-cid 16153  df-homf 16154  df-comf 16155  df-xpc 16635  df-curf 16677
This theorem is referenced by:  yonpropd  16731  oppcyon  16732
  Copyright terms: Public domain W3C validator