Step | Hyp | Ref
| Expression |
1 | | curfval.g |
. . . 4
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
2 | | curfval.a |
. . . 4
⊢ 𝐴 = (Base‘𝐶) |
3 | | curfval.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
4 | | curfval.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
5 | | curfval.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
6 | | curfval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
7 | | curf1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
8 | | curf1.k |
. . . 4
⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) |
9 | | curf12.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐷) |
10 | | curf12.1 |
. . . 4
⊢ 1 =
(Id‘𝐶) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curf1 16688 |
. . 3
⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) |
12 | | fvex 6113 |
. . . . . 6
⊢
(Base‘𝐷)
∈ V |
13 | 6, 12 | eqeltri 2684 |
. . . . 5
⊢ 𝐵 ∈ V |
14 | 13 | mptex 6390 |
. . . 4
⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)) ∈ V |
15 | 13, 13 | mpt2ex 7136 |
. . . 4
⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) ∈ V |
16 | 14, 15 | op2ndd 7070 |
. . 3
⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉 → (2nd ‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))) |
17 | 11, 16 | syl 17 |
. 2
⊢ (𝜑 → (2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))) |
18 | | curf11.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
19 | | curf12.y |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
20 | 19 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑦 = 𝑌) → 𝑍 ∈ 𝐵) |
21 | | ovex 6577 |
. . . . 5
⊢ (𝑦𝐽𝑧) ∈ V |
22 | 21 | mptex 6390 |
. . . 4
⊢ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)) ∈ V |
23 | 22 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)) ∈ V) |
24 | | curf12.g |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) |
25 | 24 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → 𝐻 ∈ (𝑌𝐽𝑍)) |
26 | | simprl 790 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → 𝑦 = 𝑌) |
27 | | simprr 792 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) |
28 | 26, 27 | oveq12d 6567 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → (𝑦𝐽𝑧) = (𝑌𝐽𝑍)) |
29 | 25, 28 | eleqtrrd 2691 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → 𝐻 ∈ (𝑦𝐽𝑧)) |
30 | | ovex 6577 |
. . . . 5
⊢ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔) ∈ V |
31 | 30 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔) ∈ V) |
32 | | simplrl 796 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑦 = 𝑌) |
33 | 32 | opeq2d 4347 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 〈𝑋, 𝑦〉 = 〈𝑋, 𝑌〉) |
34 | | simplrr 797 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑧 = 𝑍) |
35 | 34 | opeq2d 4347 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 〈𝑋, 𝑧〉 = 〈𝑋, 𝑍〉) |
36 | 33, 35 | oveq12d 6567 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉) = (〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)) |
37 | | eqidd 2611 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ( 1 ‘𝑋) = ( 1 ‘𝑋)) |
38 | | simpr 476 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑔 = 𝐻) |
39 | 36, 37, 38 | oveq123d 6570 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻)) |
40 | 29, 31, 39 | fvmptdv2 6206 |
. . 3
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → ((𝑌(2nd ‘𝐾)𝑍) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)) → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻))) |
41 | 18, 20, 23, 40 | ovmpt2dv 6691 |
. 2
⊢ (𝜑 → ((2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻))) |
42 | 17, 41 | mpd 15 |
1
⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻)) |