Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidx0 Structured version   Visualization version   GIF version

Theorem cshwidx0 13403
 Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidx0 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))

Proof of Theorem cshwidx0
StepHypRef Expression
1 hasheq0 13015 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((#‘𝑊) = 0 ↔ 𝑊 = ∅))
2 elfzo0 12376 . . . . . . . 8 (𝑁 ∈ (0..^(#‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝑁 < (#‘𝑊)))
3 elnnne0 11183 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ ↔ ((#‘𝑊) ∈ ℕ0 ∧ (#‘𝑊) ≠ 0))
4 eqneqall 2793 . . . . . . . . . . . 12 ((#‘𝑊) = 0 → ((#‘𝑊) ≠ 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
54com12 32 . . . . . . . . . . 11 ((#‘𝑊) ≠ 0 → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
65adantl 481 . . . . . . . . . 10 (((#‘𝑊) ∈ ℕ0 ∧ (#‘𝑊) ≠ 0) → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
73, 6sylbi 206 . . . . . . . . 9 ((#‘𝑊) ∈ ℕ → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
873ad2ant2 1076 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝑁 < (#‘𝑊)) → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
92, 8sylbi 206 . . . . . . 7 (𝑁 ∈ (0..^(#‘𝑊)) → ((#‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
109com13 86 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((#‘𝑊) = 0 → (𝑁 ∈ (0..^(#‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
111, 10sylbird 249 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 = ∅ → (𝑁 ∈ (0..^(#‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
1211com23 84 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑁 ∈ (0..^(#‘𝑊)) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))))
1312imp 444 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁)))
1413com12 32 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁)))
15 simpl 472 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → 𝑊 ∈ Word 𝑉)
1615adantl 481 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → 𝑊 ∈ Word 𝑉)
17 simpl 472 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → 𝑊 ≠ ∅)
18 elfzoelz 12339 . . . . . 6 (𝑁 ∈ (0..^(#‘𝑊)) → 𝑁 ∈ ℤ)
1918ad2antll 761 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → 𝑁 ∈ ℤ)
20 cshwidx0mod 13402 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (#‘𝑊))))
2116, 17, 19, 20syl3anc 1318 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (#‘𝑊))))
22 zmodidfzoimp 12562 . . . . . 6 (𝑁 ∈ (0..^(#‘𝑊)) → (𝑁 mod (#‘𝑊)) = 𝑁)
2322ad2antll 761 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → (𝑁 mod (#‘𝑊)) = 𝑁)
2423fveq2d 6107 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → (𝑊‘(𝑁 mod (#‘𝑊))) = (𝑊𝑁))
2521, 24eqtrd 2644 . . 3 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
2625ex 449 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁)))
2714, 26pm2.61ine 2865 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∅c0 3874   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  0cc0 9815   < clt 9953  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254  ..^cfzo 12334   mod cmo 12530  #chash 12979  Word cword 13146   cyclShift ccsh 13385 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158  df-csh 13386 This theorem is referenced by:  clwwisshclww  26335  clwwisshclwws  41235
 Copyright terms: Public domain W3C validator