MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn Structured version   Visualization version   GIF version

Theorem cshimadifsn 13426
Description: The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))

Proof of Theorem cshimadifsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdfn 13174 . . . . . 6 (𝐹 ∈ Word 𝑆𝐹 Fn (0..^(#‘𝐹)))
2 fnfun 5902 . . . . . 6 (𝐹 Fn (0..^(#‘𝐹)) → Fun 𝐹)
31, 2syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → Fun 𝐹)
433ad2ant1 1075 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → Fun 𝐹)
5 wrddm 13167 . . . . . 6 (𝐹 ∈ Word 𝑆 → dom 𝐹 = (0..^(#‘𝐹)))
6 difssd 3700 . . . . . . . . 9 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → ((0..^(#‘𝐹)) ∖ {𝐽}) ⊆ (0..^(#‘𝐹)))
7 oveq2 6557 . . . . . . . . . . 11 (𝑁 = (#‘𝐹) → (0..^𝑁) = (0..^(#‘𝐹)))
87difeq1d 3689 . . . . . . . . . 10 (𝑁 = (#‘𝐹) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(#‘𝐹)) ∖ {𝐽}))
98adantl 481 . . . . . . . . 9 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(#‘𝐹)) ∖ {𝐽}))
10 simpl 472 . . . . . . . . 9 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → dom 𝐹 = (0..^(#‘𝐹)))
116, 9, 103sstr4d 3611 . . . . . . . 8 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
1211a1d 25 . . . . . . 7 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
1312ex 449 . . . . . 6 (dom 𝐹 = (0..^(#‘𝐹)) → (𝑁 = (#‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
145, 13syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → (𝑁 = (#‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
15143imp 1249 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
164, 15jca 553 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
17 dfimafn 6155 . . 3 ((Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
1816, 17syl 17 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
19 modsumfzodifsn 12605 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
20193ad2antl3 1218 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
21 oveq2 6557 . . . . . . . . . 10 ((#‘𝐹) = 𝑁 → ((𝑦 + 𝐽) mod (#‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2221eqcoms 2618 . . . . . . . . 9 (𝑁 = (#‘𝐹) → ((𝑦 + 𝐽) mod (#‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2322eleq1d 2672 . . . . . . . 8 (𝑁 = (#‘𝐹) → (((𝑦 + 𝐽) mod (#‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
24233ad2ant2 1076 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (((𝑦 + 𝐽) mod (#‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2524adantr 480 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (((𝑦 + 𝐽) mod (#‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2620, 25mpbird 246 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod (#‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}))
27 modfzo0difsn 12604 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
28273ad2antl3 1218 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
29 oveq2 6557 . . . . . . . . . . 11 (𝑁 = (#‘𝐹) → ((𝑦 + 𝐽) mod 𝑁) = ((𝑦 + 𝐽) mod (#‘𝐹)))
3029eqcomd 2616 . . . . . . . . . 10 (𝑁 = (#‘𝐹) → ((𝑦 + 𝐽) mod (#‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
3130eqeq2d 2620 . . . . . . . . 9 (𝑁 = (#‘𝐹) → (𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) ↔ 𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3231rexbidv 3034 . . . . . . . 8 (𝑁 = (#‘𝐹) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
33323ad2ant2 1076 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3433adantr 480 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3528, 34mpbird 246 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)))
36 fveq2 6103 . . . . . . . 8 (𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))))
37363ad2ant3 1077 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹))) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))))
38 simpl1 1057 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐹 ∈ Word 𝑆)
39 elfzoelz 12339 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
40393ad2ant3 1077 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℤ)
4140adantr 480 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ)
42 oveq2 6557 . . . . . . . . . . . . 13 (𝑁 = (#‘𝐹) → (1..^𝑁) = (1..^(#‘𝐹)))
4342eleq2d 2673 . . . . . . . . . . . 12 (𝑁 = (#‘𝐹) → (𝑦 ∈ (1..^𝑁) ↔ 𝑦 ∈ (1..^(#‘𝐹))))
44 fzo0ss1 12367 . . . . . . . . . . . . 13 (1..^(#‘𝐹)) ⊆ (0..^(#‘𝐹))
4544sseli 3564 . . . . . . . . . . . 12 (𝑦 ∈ (1..^(#‘𝐹)) → 𝑦 ∈ (0..^(#‘𝐹)))
4643, 45syl6bi 242 . . . . . . . . . . 11 (𝑁 = (#‘𝐹) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(#‘𝐹))))
47463ad2ant2 1076 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(#‘𝐹))))
4847imp 444 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 ∈ (0..^(#‘𝐹)))
49 cshwidxmod 13400 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝐽)‘𝑦) = (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))))
5049eqcomd 2616 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5138, 41, 48, 50syl3anc 1318 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
52513adant3 1074 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5337, 52eqtrd 2644 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹))) → (𝐹𝑥) = ((𝐹 cyclShift 𝐽)‘𝑦))
5453eqeq1d 2612 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹))) → ((𝐹𝑥) = 𝑧 ↔ ((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5526, 35, 54rexxfrd2 4811 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧 ↔ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5655abbidv 2728 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
5739anim2i 591 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
58573adant2 1073 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
59 cshwfn 13398 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ) → (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)))
6058, 59syl 17 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)))
61 fnfun 5902 . . . . . . . 8 ((𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)) → Fun (𝐹 cyclShift 𝐽))
6261adantl 481 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → Fun (𝐹 cyclShift 𝐽))
6342, 44syl6eqss 3618 . . . . . . . . . 10 (𝑁 = (#‘𝐹) → (1..^𝑁) ⊆ (0..^(#‘𝐹)))
64633ad2ant2 1076 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (1..^𝑁) ⊆ (0..^(#‘𝐹)))
6564adantr 480 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → (1..^𝑁) ⊆ (0..^(#‘𝐹)))
66 fndm 5904 . . . . . . . . 9 ((𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)) → dom (𝐹 cyclShift 𝐽) = (0..^(#‘𝐹)))
6766adantl 481 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → dom (𝐹 cyclShift 𝐽) = (0..^(#‘𝐹)))
6865, 67sseqtr4d 3605 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽))
6962, 68jca 553 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
7060, 69mpdan 699 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
71 dfimafn 6155 . . . . 5 ((Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7270, 71syl 17 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7372eqcomd 2616 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧} = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
7456, 73eqtrd 2644 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
7518, 74eqtrd 2644 1 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  cdif 3537  wss 3540  {csn 4125  dom cdm 5038  cima 5041  Fun wfun 5798   Fn wfn 5799  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  cz 11254  ..^cfzo 12334   mod cmo 12530  #chash 12979  Word cword 13146   cyclShift ccsh 13385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158  df-csh 13386
This theorem is referenced by:  cshimadifsn0  13427
  Copyright terms: Public domain W3C validator