MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshf1 Structured version   Visualization version   GIF version

Theorem cshf1 13407
Description: Cyclically shifting a word which contains a symbol at most once results in a word which contains a symbol at most once. (Contributed by AV, 14-Mar-2021.)
Assertion
Ref Expression
cshf1 ((𝐹:(0..^(#‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(#‘𝐹))–1-1𝐴)

Proof of Theorem cshf1
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6014 . . . . 5 (𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹:(0..^(#‘𝐹))⟶𝐴)
2 iswrdi 13164 . . . . 5 (𝐹:(0..^(#‘𝐹))⟶𝐴𝐹 ∈ Word 𝐴)
31, 2syl 17 . . . 4 (𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴)
4 cshwf 13397 . . . . . . . . 9 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴)
543adant1 1072 . . . . . . . 8 ((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴)
65adantr 480 . . . . . . 7 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴)
7 feq1 5939 . . . . . . . 8 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ↔ (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴))
87adantl 481 . . . . . . 7 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ↔ (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴))
96, 8mpbird 246 . . . . . 6 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(#‘𝐹))⟶𝐴)
10 dff13 6416 . . . . . . . 8 (𝐹:(0..^(#‘𝐹))–1-1𝐴 ↔ (𝐹:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
11 fveq1 6102 . . . . . . . . . . . . . . . . . 18 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
12113ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
1312adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
14 cshwidxmod 13400 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑖 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))))
15143expia 1259 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑖 ∈ (0..^(#‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹)))))
16153adant1 1072 . . . . . . . . . . . . . . . . . . 19 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑖 ∈ (0..^(#‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹)))))
1716com12 32 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^(#‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹)))))
1817adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹)))))
1918impcom 445 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))))
2013, 19eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝐺𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))))
21 fveq1 6102 . . . . . . . . . . . . . . . . . 18 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
22213ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
2322adantr 480 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
24 cshwidxmod 13400 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
25243expia 1259 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(#‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
26253adant1 1072 . . . . . . . . . . . . . . . . . 18 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(#‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
2726adantld 482 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
2827imp 444 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
2923, 28eqtrd 2644 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝐺𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
3020, 29eqeq12d 2625 . . . . . . . . . . . . . 14 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) ↔ (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
3130adantlr 747 . . . . . . . . . . . . 13 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) ↔ (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
32 elfzo0 12376 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^(#‘𝐹)) ↔ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ ∧ 𝑖 < (#‘𝐹)))
33 nn0z 11277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
3433adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → 𝑖 ∈ ℤ)
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → 𝑖 ∈ ℤ)
36 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → 𝑆 ∈ ℤ)
3735, 36zaddcld 11362 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → (𝑖 + 𝑆) ∈ ℤ)
38 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → (#‘𝐹) ∈ ℕ)
3938adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → (#‘𝐹) ∈ ℕ)
4037, 39jca 553 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ))
4140ex 449 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ ℤ → ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
42413ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
4342com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
44433adant3 1074 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ ∧ 𝑖 < (#‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
4532, 44sylbi 206 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(#‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
4645adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
4746impcom 445 . . . . . . . . . . . . . . . . . 18 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ))
48 zmodfzo 12555 . . . . . . . . . . . . . . . . . 18 (((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)))
4947, 48syl 17 . . . . . . . . . . . . . . . . 17 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝑖 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)))
50 elfzo0 12376 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0..^(#‘𝐹)) ↔ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ ∧ 𝑗 < (#‘𝐹)))
51 nn0z 11277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → 𝑗 ∈ ℤ)
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → 𝑗 ∈ ℤ)
54 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → 𝑆 ∈ ℤ)
5553, 54zaddcld 11362 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → (𝑗 + 𝑆) ∈ ℤ)
56 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → (#‘𝐹) ∈ ℕ)
5756adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → (#‘𝐹) ∈ ℕ)
5855, 57jca 553 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ))
5958expcom 450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
60593adant3 1074 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ ∧ 𝑗 < (#‘𝐹)) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
6150, 60sylbi 206 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^(#‘𝐹)) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
6261com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℤ → (𝑗 ∈ (0..^(#‘𝐹)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
63623ad2ant3 1077 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(#‘𝐹)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
6463adantld 482 . . . . . . . . . . . . . . . . . . 19 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
6564imp 444 . . . . . . . . . . . . . . . . . 18 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ))
66 zmodfzo 12555 . . . . . . . . . . . . . . . . . 18 (((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ) → ((𝑗 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝑗 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)))
68 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ((𝑖 + 𝑆) mod (#‘𝐹)) → (𝐹𝑥) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))))
6968eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑖 + 𝑆) mod (#‘𝐹)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹𝑦)))
70 eqeq1 2614 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑖 + 𝑆) mod (#‘𝐹)) → (𝑥 = 𝑦 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = 𝑦))
7169, 70imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖 + 𝑆) mod (#‘𝐹)) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹𝑦) → ((𝑖 + 𝑆) mod (#‘𝐹)) = 𝑦)))
72 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝑗 + 𝑆) mod (#‘𝐹)) → (𝐹𝑦) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
7372eqeq2d 2620 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑗 + 𝑆) mod (#‘𝐹)) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹𝑦) ↔ (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
74 eqeq2 2621 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑗 + 𝑆) mod (#‘𝐹)) → (((𝑖 + 𝑆) mod (#‘𝐹)) = 𝑦 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
7573, 74imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑗 + 𝑆) mod (#‘𝐹)) → (((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹𝑦) → ((𝑖 + 𝑆) mod (#‘𝐹)) = 𝑦) ↔ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
7671, 75rspc2v 3293 . . . . . . . . . . . . . . . . 17 ((((𝑖 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)) ∧ ((𝑗 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹))) → (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
7749, 67, 76syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
78 simpr 476 . . . . . . . . . . . . . . . . . 18 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
79 addmodlteq 12607 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)) ∧ 𝑆 ∈ ℤ) → (((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)) ↔ 𝑖 = 𝑗))
80793expa 1257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) ∧ 𝑆 ∈ ℤ) → (((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)) ↔ 𝑖 = 𝑗))
8180ancoms 468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)) ↔ 𝑖 = 𝑗))
8281bicomd 212 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
8382ex 449 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℤ → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
84833ad2ant3 1077 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
8584imp 444 . . . . . . . . . . . . . . . . . . 19 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
8685adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
8778, 86sylibrd 248 . . . . . . . . . . . . . . . . 17 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗))
8887ex 449 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗)))
8977, 88syld 46 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗)))
9089impancom 455 . . . . . . . . . . . . . 14 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗)))
9190imp 444 . . . . . . . . . . . . 13 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗))
9231, 91sylbid 229 . . . . . . . . . . . 12 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
9392ralrimivva 2954 . . . . . . . . . . 11 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
94933exp1 1275 . . . . . . . . . 10 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9594com14 94 . . . . . . . . 9 (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9695adantl 481 . . . . . . . 8 ((𝐹:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9710, 96sylbi 206 . . . . . . 7 (𝐹:(0..^(#‘𝐹))–1-1𝐴 → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
98973imp1 1272 . . . . . 6 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
999, 98jca 553 . . . . 5 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
100993exp1 1275 . . . 4 (𝐹:(0..^(#‘𝐹))–1-1𝐴 → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))))))
1013, 100mpd 15 . . 3 (𝐹:(0..^(#‘𝐹))–1-1𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
1021013imp 1249 . 2 ((𝐹:(0..^(#‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
103 dff13 6416 . 2 (𝐺:(0..^(#‘𝐹))–1-1𝐴 ↔ (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
104102, 103sylibr 223 1 ((𝐹:(0..^(#‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(#‘𝐹))–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  0cc0 9815   + caddc 9818   < clt 9953  cn 10897  0cn0 11169  cz 11254  ..^cfzo 12334   mod cmo 12530  #chash 12979  Word cword 13146   cyclShift ccsh 13385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158  df-csh 13386
This theorem is referenced by:  cshinj  13408
  Copyright terms: Public domain W3C validator