MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopg Structured version   Visualization version   GIF version

Theorem csbopg 4358
Description: Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015.) (Revised by Mario Carneiro, 29-Oct-2015.) (Revised by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbopg (𝐴𝑉𝐴 / 𝑥𝐶, 𝐷⟩ = ⟨𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩)

Proof of Theorem csbopg
StepHypRef Expression
1 csbif 4088 . . 3 𝐴 / 𝑥if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅) = if([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V), 𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}}, 𝐴 / 𝑥∅)
2 sbcan 3445 . . . . 5 ([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ ([𝐴 / 𝑥]𝐶 ∈ V ∧ [𝐴 / 𝑥]𝐷 ∈ V))
3 sbcel1g 3939 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝐶 ∈ V ↔ 𝐴 / 𝑥𝐶 ∈ V))
4 sbcel1g 3939 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝐷 ∈ V ↔ 𝐴 / 𝑥𝐷 ∈ V))
53, 4anbi12d 743 . . . . 5 (𝐴𝑉 → (([𝐴 / 𝑥]𝐶 ∈ V ∧ [𝐴 / 𝑥]𝐷 ∈ V) ↔ (𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V)))
62, 5syl5bb 271 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V)))
7 csbprg 4191 . . . . 5 (𝐴𝑉𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}} = {𝐴 / 𝑥{𝐶}, 𝐴 / 𝑥{𝐶, 𝐷}})
8 csbsng 4190 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝐶} = {𝐴 / 𝑥𝐶})
9 csbprg 4191 . . . . . 6 (𝐴𝑉𝐴 / 𝑥{𝐶, 𝐷} = {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷})
108, 9preq12d 4220 . . . . 5 (𝐴𝑉 → {𝐴 / 𝑥{𝐶}, 𝐴 / 𝑥{𝐶, 𝐷}} = {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}})
117, 10eqtrd 2644 . . . 4 (𝐴𝑉𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}} = {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}})
12 csbconstg 3512 . . . 4 (𝐴𝑉𝐴 / 𝑥∅ = ∅)
136, 11, 12ifbieq12d 4063 . . 3 (𝐴𝑉 → if([𝐴 / 𝑥](𝐶 ∈ V ∧ 𝐷 ∈ V), 𝐴 / 𝑥{{𝐶}, {𝐶, 𝐷}}, 𝐴 / 𝑥∅) = if((𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V), {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}}, ∅))
141, 13syl5eq 2656 . 2 (𝐴𝑉𝐴 / 𝑥if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅) = if((𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V), {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}}, ∅))
15 dfopif 4337 . . 3 𝐶, 𝐷⟩ = if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅)
1615csbeq2i 3945 . 2 𝐴 / 𝑥𝐶, 𝐷⟩ = 𝐴 / 𝑥if((𝐶 ∈ V ∧ 𝐷 ∈ V), {{𝐶}, {𝐶, 𝐷}}, ∅)
17 dfopif 4337 . 2 𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩ = if((𝐴 / 𝑥𝐶 ∈ V ∧ 𝐴 / 𝑥𝐷 ∈ V), {{𝐴 / 𝑥𝐶}, {𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷}}, ∅)
1814, 16, 173eqtr4g 2669 1 (𝐴𝑉𝐴 / 𝑥𝐶, 𝐷⟩ = ⟨𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  [wsbc 3402  csb 3499  c0 3874  ifcif 4036  {csn 4125  {cpr 4127  cop 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132
This theorem is referenced by:  esum2dlem  29481  csbfinxpg  32401
  Copyright terms: Public domain W3C validator