Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefi | Structured version Visualization version GIF version |
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefi.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
crefi | ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1054 | . . . 4 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐽 ∈ CovHasRef𝐴) | |
2 | simp2 1055 | . . . 4 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ⊆ 𝐽) | |
3 | 1, 2 | ssexd 4733 | . . 3 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ∈ V) |
4 | elpwg 4116 | . . . 4 ⊢ (𝐶 ∈ V → (𝐶 ∈ 𝒫 𝐽 ↔ 𝐶 ⊆ 𝐽)) | |
5 | 4 | biimpar 501 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐶 ⊆ 𝐽) → 𝐶 ∈ 𝒫 𝐽) |
6 | 3, 2, 5 | syl2anc 691 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝐶 ∈ 𝒫 𝐽) |
7 | crefi.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
8 | 7 | iscref 29239 | . . . 4 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
9 | 8 | simprbi 479 | . . 3 ⊢ (𝐽 ∈ CovHasRef𝐴 → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
10 | 9 | 3ad2ant1 1075 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
11 | simp3 1056 | . 2 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → 𝑋 = ∪ 𝐶) | |
12 | unieq 4380 | . . . . 5 ⊢ (𝑦 = 𝐶 → ∪ 𝑦 = ∪ 𝐶) | |
13 | 12 | eqeq2d 2620 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐶)) |
14 | breq2 4587 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑧Ref𝑦 ↔ 𝑧Ref𝐶)) | |
15 | 14 | rexbidv 3034 | . . . 4 ⊢ (𝑦 = 𝐶 → (∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶)) |
16 | 13, 15 | imbi12d 333 | . . 3 ⊢ (𝑦 = 𝐶 → ((𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) ↔ (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
17 | 16 | rspcv 3278 | . 2 ⊢ (𝐶 ∈ 𝒫 𝐽 → (∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦) → (𝑋 = ∪ 𝐶 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶))) |
18 | 6, 10, 11, 17 | syl3c 64 | 1 ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 Vcvv 3173 ∩ cin 3539 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 class class class wbr 4583 Topctop 20517 Refcref 21115 CovHasRefccref 29237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-cref 29238 |
This theorem is referenced by: crefdf 29243 |
Copyright terms: Public domain | W3C validator |