MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnnen Structured version   Visualization version   GIF version

Theorem cpnnen 14797
Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
cpnnen ℂ ≈ 𝒫 ℕ

Proof of Theorem cpnnen
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexpen 14796 . . 3 (ℝ × ℝ) ≈ ℝ
2 eleq1 2676 . . . . . . . . 9 (𝑣 = 𝑥 → (𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ))
3 eleq1 2676 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ))
42, 3bi2anan9 913 . . . . . . . 8 ((𝑣 = 𝑥𝑤 = 𝑦) → ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
5 oveq2 6557 . . . . . . . . . 10 (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦))
6 oveq12 6558 . . . . . . . . . 10 ((𝑣 = 𝑥 ∧ (i · 𝑤) = (i · 𝑦)) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
75, 6sylan2 490 . . . . . . . . 9 ((𝑣 = 𝑥𝑤 = 𝑦) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
87eqeq2d 2620 . . . . . . . 8 ((𝑣 = 𝑥𝑤 = 𝑦) → (𝑧 = (𝑣 + (i · 𝑤)) ↔ 𝑧 = (𝑥 + (i · 𝑦))))
94, 8anbi12d 743 . . . . . . 7 ((𝑣 = 𝑥𝑤 = 𝑦) → (((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤))) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))))
109cbvoprab12v 6628 . . . . . 6 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))}
11 df-mpt2 6554 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))}
1210, 11eqtr4i 2635 . . . . 5 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
1312cnref1o 11703 . . . 4 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ
14 reex 9906 . . . . . 6 ℝ ∈ V
1514, 14xpex 6860 . . . . 5 (ℝ × ℝ) ∈ V
1615f1oen 7862 . . . 4 ({⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ → (ℝ × ℝ) ≈ ℂ)
1713, 16ax-mp 5 . . 3 (ℝ × ℝ) ≈ ℂ
181, 17entr3i 7898 . 2 ℝ ≈ ℂ
19 rpnnen 14795 . 2 ℝ ≈ 𝒫 ℕ
2018, 19entr3i 7898 1 ℂ ≈ 𝒫 ℕ
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wcel 1977  𝒫 cpw 4108   class class class wbr 4583   × cxp 5036  1-1-ontowf1o 5803  (class class class)co 6549  {coprab 6550  cmpt2 6551  cen 7838  cc 9813  cr 9814  ici 9817   + caddc 9818   · cmul 9820  cn 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265
This theorem is referenced by:  cnso  14815
  Copyright terms: Public domain W3C validator