Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnfval Structured version   Visualization version   GIF version

Theorem cpnfval 23501
 Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnfval (𝑆 ⊆ ℂ → (Cn𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
Distinct variable group:   𝑓,𝑛,𝑆

Proof of Theorem cpnfval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cnex 9896 . . 3 ℂ ∈ V
21elpw2 4755 . 2 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
3 oveq2 6557 . . . . 5 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
4 oveq1 6556 . . . . . . 7 (𝑠 = 𝑆 → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝑓))
54fveq1d 6105 . . . . . 6 (𝑠 = 𝑆 → ((𝑠 D𝑛 𝑓)‘𝑛) = ((𝑆 D𝑛 𝑓)‘𝑛))
65eleq1d 2672 . . . . 5 (𝑠 = 𝑆 → (((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ) ↔ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)))
73, 6rabeqbidv 3168 . . . 4 (𝑠 = 𝑆 → {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)} = {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})
87mpteq2dv 4673 . . 3 (𝑠 = 𝑆 → (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
9 df-cpn 23439 . . 3 Cn = (𝑠 ∈ 𝒫 ℂ ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
10 nn0ex 11175 . . . 4 0 ∈ V
1110mptex 6390 . . 3 (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) ∈ V
128, 9, 11fvmpt 6191 . 2 (𝑆 ∈ 𝒫 ℂ → (Cn𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
132, 12sylbir 224 1 (𝑆 ⊆ ℂ → (Cn𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {crab 2900   ⊆ wss 3540  𝒫 cpw 4108   ↦ cmpt 4643  dom cdm 5038  ‘cfv 5804  (class class class)co 6549   ↑pm cpm 7745  ℂcc 9813  ℕ0cn0 11169  –cn→ccncf 22487   D𝑛 cdvn 23434  Cnccpn 23435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-nn 10898  df-n0 11170  df-cpn 23439 This theorem is referenced by:  fncpn  23502  elcpn  23503
 Copyright terms: Public domain W3C validator