MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatpmat Structured version   Visualization version   GIF version

Theorem cpmatpmat 20334
Description: A constant polynomial matrix is a polynomial matrix. (Contributed by AV, 16-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmat.p 𝑃 = (Poly1𝑅)
cpmat.c 𝐶 = (𝑁 Mat 𝑃)
cpmat.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cpmatpmat ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝐵)

Proof of Theorem cpmatpmat
Dummy variables 𝑚 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmat.s . . . . 5 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmat.p . . . . 5 𝑃 = (Poly1𝑅)
3 cpmat.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
4 cpmat.b . . . . 5 𝐵 = (Base‘𝐶)
51, 2, 3, 4cpmat 20333 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
65eleq2d 2673 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)}))
7 elrabi 3328 . . 3 (𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)} → 𝑀𝐵)
86, 7syl6bi 242 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))
983impia 1253 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cfv 5804  (class class class)co 6549  Fincfn 7841  cn 10897  Basecbs 15695  0gc0g 15923  Poly1cpl1 19368  coe1cco1 19369   Mat cmat 20032   ConstPolyMat ccpmat 20327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-cpmat 20330
This theorem is referenced by:  cpmatelimp  20336  cpmatelimp2  20338  cpmatacl  20340  cpmatinvcl  20341  cpmatmcl  20343  cpm2mf  20376  m2cpminvid2lem  20378  m2cpminvid2  20379  m2cpmfo  20380  m2cpmrngiso  20382
  Copyright terms: Public domain W3C validator