Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cplgrop Structured version   Visualization version   GIF version

Theorem cplgrop 40659
 Description: A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.)
Assertion
Ref Expression
cplgrop (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)

Proof of Theorem cplgrop
Dummy variables 𝑒 𝑔 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2610 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iscplgredg 40639 . . . . 5 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
4 edgaval 25794 . . . . . 6 (𝐺 ∈ ComplGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
5 simpl 472 . . . . . . . . . . . 12 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Vtx‘𝑔) = (Vtx‘𝐺))
65adantl 481 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Vtx‘𝑔) = (Vtx‘𝐺))
75difeq1d 3689 . . . . . . . . . . . . 13 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
87adantl 481 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
9 vex 3176 . . . . . . . . . . . . . . . . 17 𝑔 ∈ V
10 edgaval 25794 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ V → (Edg‘𝑔) = ran (iEdg‘𝑔))
119, 10ax-mp 5 . . . . . . . . . . . . . . . 16 (Edg‘𝑔) = ran (iEdg‘𝑔)
12 simpr 476 . . . . . . . . . . . . . . . . 17 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (iEdg‘𝑔) = (iEdg‘𝐺))
1312rneqd 5274 . . . . . . . . . . . . . . . 16 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ran (iEdg‘𝑔) = ran (iEdg‘𝐺))
1411, 13syl5eq 2656 . . . . . . . . . . . . . . 15 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Edg‘𝑔) = ran (iEdg‘𝐺))
1514adantl 481 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = ran (iEdg‘𝐺))
16 simpl 472 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1715, 16eqtr4d 2647 . . . . . . . . . . . . 13 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = (Edg‘𝐺))
1817rexeqdv 3122 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
198, 18raleqbidv 3129 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
206, 19raleqbidv 3129 . . . . . . . . . 10 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
2120biimpar 501 . . . . . . . . 9 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
22 eqid 2610 . . . . . . . . . . 11 (Vtx‘𝑔) = (Vtx‘𝑔)
23 eqid 2610 . . . . . . . . . . 11 (Edg‘𝑔) = (Edg‘𝑔)
2422, 23iscplgredg 40639 . . . . . . . . . 10 (𝑔 ∈ V → (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒))
259, 24ax-mp 5 . . . . . . . . 9 (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
2621, 25sylibr 223 . . . . . . . 8 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → 𝑔 ∈ ComplGraph)
2726expcom 450 . . . . . . 7 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → 𝑔 ∈ ComplGraph))
2827expd 451 . . . . . 6 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → ((Edg‘𝐺) = ran (iEdg‘𝐺) → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
294, 28syl5com 31 . . . . 5 (𝐺 ∈ ComplGraph → (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
303, 29sylbid 229 . . . 4 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
3130pm2.43i 50 . . 3 (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
3231alrimiv 1842 . 2 (𝐺 ∈ ComplGraph → ∀𝑔(((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
33 fvex 6113 . . 3 (Vtx‘𝐺) ∈ V
3433a1i 11 . 2 (𝐺 ∈ ComplGraph → (Vtx‘𝐺) ∈ V)
35 fvex 6113 . . 3 (iEdg‘𝐺) ∈ V
3635a1i 11 . 2 (𝐺 ∈ ComplGraph → (iEdg‘𝐺) ∈ V)
3732, 34, 36gropeld 25710 1 (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∖ cdif 3537   ⊆ wss 3540  {csn 4125  {cpr 4127  ⟨cop 4131  ran crn 5039  ‘cfv 5804  Vtxcvtx 25673  iEdgciedg 25674  Edgcedga 25792  ComplGraphccplgr 40552 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-vtx 25675  df-iedg 25676  df-edga 25793  df-nbgr 40554  df-uvtxa 40556  df-cplgr 40557 This theorem is referenced by:  cusgrop  40660
 Copyright terms: Public domain W3C validator