MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphreccllem Structured version   Visualization version   GIF version

Theorem cphreccllem 22786
Description: Lemma for cphreccl 22789. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphreccllem ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)

Proof of Theorem cphreccllem
StepHypRef Expression
1 cphsubrglem.k . . . . . . . 8 𝐾 = (Base‘𝐹)
2 cphsubrglem.1 . . . . . . . 8 (𝜑𝐹 = (ℂflds 𝐴))
3 cphsubrglem.2 . . . . . . . 8 (𝜑𝐹 ∈ DivRing)
41, 2, 3cphsubrglem 22785 . . . . . . 7 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
54simp3d 1068 . . . . . 6 (𝜑𝐾 ∈ (SubRing‘ℂfld))
653ad2ant1 1075 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
7 cnfldbas 19571 . . . . . 6 ℂ = (Base‘ℂfld)
87subrgss 18604 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ⊆ ℂ)
10 simp2 1055 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋𝐾)
119, 10sseldd 3569 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ ℂ)
12 simp3 1056 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ 0)
13 cnfldinv 19596 . . 3 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
1411, 12, 13syl2anc 691 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
15 eqid 2610 . . . . . . . . . 10 (ℂflds 𝐾) = (ℂflds 𝐾)
16 cnfld0 19589 . . . . . . . . . 10 0 = (0g‘ℂfld)
1715, 16subrg0 18610 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
186, 17syl 17 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g‘(ℂflds 𝐾)))
194simp1d 1066 . . . . . . . . . 10 (𝜑𝐹 = (ℂflds 𝐾))
20193ad2ant1 1075 . . . . . . . . 9 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 = (ℂflds 𝐾))
2120fveq2d 6107 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → (0g𝐹) = (0g‘(ℂflds 𝐾)))
2218, 21eqtr4d 2647 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g𝐹))
2312, 22neeqtrd 2851 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ (0g𝐹))
24 eldifsn 4260 . . . . . 6 (𝑋 ∈ (𝐾 ∖ {(0g𝐹)}) ↔ (𝑋𝐾𝑋 ≠ (0g𝐹)))
2510, 23, 24sylanbrc 695 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (𝐾 ∖ {(0g𝐹)}))
2633ad2ant1 1075 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 ∈ DivRing)
27 eqid 2610 . . . . . . . . 9 (Unit‘𝐹) = (Unit‘𝐹)
28 eqid 2610 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
291, 27, 28isdrng 18574 . . . . . . . 8 (𝐹 ∈ DivRing ↔ (𝐹 ∈ Ring ∧ (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)})))
3029simprbi 479 . . . . . . 7 (𝐹 ∈ DivRing → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3126, 30syl 17 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3220fveq2d 6107 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (Unit‘(ℂflds 𝐾)))
3331, 32eqtr3d 2646 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝐾 ∖ {(0g𝐹)}) = (Unit‘(ℂflds 𝐾)))
3425, 33eleqtrd 2690 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (Unit‘(ℂflds 𝐾)))
35 eqid 2610 . . . . . 6 (Unit‘ℂfld) = (Unit‘ℂfld)
36 eqid 2610 . . . . . 6 (Unit‘(ℂflds 𝐾)) = (Unit‘(ℂflds 𝐾))
37 eqid 2610 . . . . . 6 (invr‘ℂfld) = (invr‘ℂfld)
3815, 35, 36, 37subrgunit 18621 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
396, 38syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
4034, 39mpbid 221 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))
4140simp3d 1068 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) ∈ 𝐾)
4214, 41eqeltrrd 2689 1 ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cdif 3537  cin 3539  wss 3540  {csn 4125  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   / cdiv 10563  Basecbs 15695  s cress 15696  0gc0g 15923  Ringcrg 18370  Unitcui 18462  invrcinvr 18494  DivRingcdr 18570  SubRingcsubrg 18599  fldccnfld 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-seq 12664  df-exp 12723  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-subrg 18601  df-cnfld 19568
This theorem is referenced by:  cphreccl  22789  ipcau2  22841
  Copyright terms: Public domain W3C validator