Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotsqcscsq Structured version   Visualization version   GIF version

Theorem cotsqcscsq 42302
Description: Prove the tangent squared cosecant squared identity (1 + ((cot A ) ^ 2 ) ) = ( ( csc 𝐴)↑2)). (Contributed by David A. Wheeler, 27-May-2015.)
Assertion
Ref Expression
cotsqcscsq ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + ((cot‘𝐴)↑2)) = ((csc‘𝐴)↑2))

Proof of Theorem cotsqcscsq
StepHypRef Expression
1 cotval 42289 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
21oveq1d 6564 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((cot‘𝐴)↑2) = (((cos‘𝐴) / (sin‘𝐴))↑2))
32oveq2d 6565 . 2 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + ((cot‘𝐴)↑2)) = (1 + (((cos‘𝐴) / (sin‘𝐴))↑2)))
4 sincossq 14745 . . . . 5 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
54oveq1d 6564 . . . 4 (𝐴 ∈ ℂ → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) / ((sin‘𝐴)↑2)) = (1 / ((sin‘𝐴)↑2)))
65adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) / ((sin‘𝐴)↑2)) = (1 / ((sin‘𝐴)↑2)))
7 sincl 14695 . . . . . . . 8 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
87sqcld 12868 . . . . . . 7 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
98adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ∈ ℂ)
10 sqne0 12792 . . . . . . . 8 ((sin‘𝐴) ∈ ℂ → (((sin‘𝐴)↑2) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
117, 10syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
1211biimpar 501 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ 0)
139, 12dividd 10678 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) / ((sin‘𝐴)↑2)) = 1)
1413oveq1d 6564 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((sin‘𝐴)↑2)) + (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2))) = (1 + (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2))))
15 coscl 14696 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
1615sqcld 12868 . . . . . 6 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
1716adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ∈ ℂ)
189, 17, 9, 12divdird 10718 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) / ((sin‘𝐴)↑2)) = ((((sin‘𝐴)↑2) / ((sin‘𝐴)↑2)) + (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2))))
1915, 7jca 553 . . . . . 6 (𝐴 ∈ ℂ → ((cos‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ))
20 2nn0 11186 . . . . . . . 8 2 ∈ ℕ0
21 expdiv 12773 . . . . . . . 8 (((cos‘𝐴) ∈ ℂ ∧ ((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((cos‘𝐴) / (sin‘𝐴))↑2) = (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2)))
2220, 21mp3an3 1405 . . . . . . 7 (((cos‘𝐴) ∈ ℂ ∧ ((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0)) → (((cos‘𝐴) / (sin‘𝐴))↑2) = (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2)))
2322anassrs 678 . . . . . 6 ((((cos‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) ∧ (sin‘𝐴) ≠ 0) → (((cos‘𝐴) / (sin‘𝐴))↑2) = (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2)))
2419, 23sylan 487 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (((cos‘𝐴) / (sin‘𝐴))↑2) = (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2)))
2524oveq2d 6565 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + (((cos‘𝐴) / (sin‘𝐴))↑2)) = (1 + (((cos‘𝐴)↑2) / ((sin‘𝐴)↑2))))
2614, 18, 253eqtr4rd 2655 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + (((cos‘𝐴) / (sin‘𝐴))↑2)) = ((((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) / ((sin‘𝐴)↑2)))
27 cscval 42288 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (csc‘𝐴) = (1 / (sin‘𝐴)))
2827oveq1d 6564 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((csc‘𝐴)↑2) = ((1 / (sin‘𝐴))↑2))
29 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
30 expdiv 12773 . . . . . . 7 ((1 ∈ ℂ ∧ ((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → ((1 / (sin‘𝐴))↑2) = ((1↑2) / ((sin‘𝐴)↑2)))
3129, 20, 30mp3an13 1407 . . . . . 6 (((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((1 / (sin‘𝐴))↑2) = ((1↑2) / ((sin‘𝐴)↑2)))
327, 31sylan 487 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((1 / (sin‘𝐴))↑2) = ((1↑2) / ((sin‘𝐴)↑2)))
33 sq1 12820 . . . . . 6 (1↑2) = 1
3433oveq1i 6559 . . . . 5 ((1↑2) / ((sin‘𝐴)↑2)) = (1 / ((sin‘𝐴)↑2))
3532, 34syl6eq 2660 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((1 / (sin‘𝐴))↑2) = (1 / ((sin‘𝐴)↑2)))
3628, 35eqtrd 2644 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((csc‘𝐴)↑2) = (1 / ((sin‘𝐴)↑2)))
376, 26, 363eqtr4rd 2655 . 2 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → ((csc‘𝐴)↑2) = (1 + (((cos‘𝐴) / (sin‘𝐴))↑2)))
383, 37eqtr4d 2647 1 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (1 + ((cot‘𝐴)↑2)) = ((csc‘𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   / cdiv 10563  2c2 10947  0cn0 11169  cexp 12722  sincsin 14633  cosccos 14634  cscccsc 42282  cotccot 42283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-csc 42285  df-cot 42286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator