MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos01gt0 Structured version   Visualization version   GIF version

Theorem cos01gt0 14760
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 9965 . . . . . . . . . 10 0 ∈ ℝ*
2 1re 9918 . . . . . . . . . 10 1 ∈ ℝ
3 elioc2 12107 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
41, 2, 3mp2an 704 . . . . . . . . 9 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
54simp1bi 1069 . . . . . . . 8 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
65resqcld 12897 . . . . . . 7 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℝ)
76recnd 9947 . . . . . 6 (𝐴 ∈ (0(,]1) → (𝐴↑2) ∈ ℂ)
8 2cn 10968 . . . . . . 7 2 ∈ ℂ
9 3cn 10972 . . . . . . . 8 3 ∈ ℂ
10 3ne0 10992 . . . . . . . 8 3 ≠ 0
119, 10pm3.2i 470 . . . . . . 7 (3 ∈ ℂ ∧ 3 ≠ 0)
12 div12 10586 . . . . . . 7 ((2 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
138, 11, 12mp3an13 1407 . . . . . 6 ((𝐴↑2) ∈ ℂ → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
147, 13syl 17 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) = ((𝐴↑2) · (2 / 3)))
15 2z 11286 . . . . . . . . . 10 2 ∈ ℤ
16 expgt0 12755 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
1715, 16mp3an2 1404 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴↑2))
18173adant3 1074 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → 0 < (𝐴↑2))
194, 18sylbi 206 . . . . . . 7 (𝐴 ∈ (0(,]1) → 0 < (𝐴↑2))
20 2lt3 11072 . . . . . . . . . 10 2 < 3
21 2re 10967 . . . . . . . . . . 11 2 ∈ ℝ
22 3re 10971 . . . . . . . . . . 11 3 ∈ ℝ
23 3pos 10991 . . . . . . . . . . 11 0 < 3
2421, 22, 22, 23ltdiv1ii 10832 . . . . . . . . . 10 (2 < 3 ↔ (2 / 3) < (3 / 3))
2520, 24mpbi 219 . . . . . . . . 9 (2 / 3) < (3 / 3)
269, 10dividi 10637 . . . . . . . . 9 (3 / 3) = 1
2725, 26breqtri 4608 . . . . . . . 8 (2 / 3) < 1
2821, 22, 10redivcli 10671 . . . . . . . . 9 (2 / 3) ∈ ℝ
29 ltmul2 10753 . . . . . . . . 9 (((2 / 3) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2))) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3028, 2, 29mp3an12 1406 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((2 / 3) < 1 ↔ ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1)))
3127, 30mpbii 222 . . . . . . 7 (((𝐴↑2) ∈ ℝ ∧ 0 < (𝐴↑2)) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
326, 19, 31syl2anc 691 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < ((𝐴↑2) · 1))
337mulid1d 9936 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · 1) = (𝐴↑2))
3432, 33breqtrd 4609 . . . . 5 (𝐴 ∈ (0(,]1) → ((𝐴↑2) · (2 / 3)) < (𝐴↑2))
3514, 34eqbrtrd 4605 . . . 4 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < (𝐴↑2))
36 0re 9919 . . . . . . . . 9 0 ∈ ℝ
37 ltle 10005 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
3836, 37mpan 702 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
3938imdistani 722 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
40 le2sq2 12801 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 𝐴 ≤ 1)) → (𝐴↑2) ≤ (1↑2))
412, 40mpanr1 715 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
4239, 41stoic3 1692 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1) → (𝐴↑2) ≤ (1↑2))
434, 42sylbi 206 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ (1↑2))
44 sq1 12820 . . . . 5 (1↑2) = 1
4543, 44syl6breq 4624 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑2) ≤ 1)
46 redivcl 10623 . . . . . . . 8 (((𝐴↑2) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → ((𝐴↑2) / 3) ∈ ℝ)
4722, 10, 46mp3an23 1408 . . . . . . 7 ((𝐴↑2) ∈ ℝ → ((𝐴↑2) / 3) ∈ ℝ)
486, 47syl 17 . . . . . 6 (𝐴 ∈ (0(,]1) → ((𝐴↑2) / 3) ∈ ℝ)
49 remulcl 9900 . . . . . 6 ((2 ∈ ℝ ∧ ((𝐴↑2) / 3) ∈ ℝ) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
5021, 48, 49sylancr 694 . . . . 5 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) ∈ ℝ)
51 ltletr 10008 . . . . . 6 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
522, 51mp3an3 1405 . . . . 5 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ (𝐴↑2) ∈ ℝ) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5350, 6, 52syl2anc 691 . . . 4 (𝐴 ∈ (0(,]1) → (((2 · ((𝐴↑2) / 3)) < (𝐴↑2) ∧ (𝐴↑2) ≤ 1) → (2 · ((𝐴↑2) / 3)) < 1))
5435, 45, 53mp2and 711 . . 3 (𝐴 ∈ (0(,]1) → (2 · ((𝐴↑2) / 3)) < 1)
55 posdif 10400 . . . 4 (((2 · ((𝐴↑2) / 3)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5650, 2, 55sylancl 693 . . 3 (𝐴 ∈ (0(,]1) → ((2 · ((𝐴↑2) / 3)) < 1 ↔ 0 < (1 − (2 · ((𝐴↑2) / 3)))))
5754, 56mpbid 221 . 2 (𝐴 ∈ (0(,]1) → 0 < (1 − (2 · ((𝐴↑2) / 3))))
58 cos01bnd 14755 . . 3 (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
5958simpld 474 . 2 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴))
60 resubcl 10224 . . . 4 ((1 ∈ ℝ ∧ (2 · ((𝐴↑2) / 3)) ∈ ℝ) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
612, 50, 60sylancr 694 . . 3 (𝐴 ∈ (0(,]1) → (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ)
625recoscld 14713 . . 3 (𝐴 ∈ (0(,]1) → (cos‘𝐴) ∈ ℝ)
63 lttr 9993 . . . 4 ((0 ∈ ℝ ∧ (1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6436, 63mp3an1 1403 . . 3 (((1 − (2 · ((𝐴↑2) / 3))) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6561, 62, 64syl2anc 691 . 2 (𝐴 ∈ (0(,]1) → ((0 < (1 − (2 · ((𝐴↑2) / 3))) ∧ (1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴)) → 0 < (cos‘𝐴)))
6657, 59, 65mp2and 711 1 (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  3c3 10948  cz 11254  (,]cioc 12047  cexp 12722  cosccos 14634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioc 12051  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-cos 14640
This theorem is referenced by:  sin02gt0  14761  sincos1sgn  14762  tangtx  24061
  Copyright terms: Public domain W3C validator