MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmproddvdslem Structured version   Visualization version   GIF version

Theorem coprmproddvdslem 15214
Description: Lemma for coprmproddvds 15215: Induction step. (Contributed by AV, 19-Aug-2020.)
Assertion
Ref Expression
coprmproddvdslem ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
Distinct variable groups:   𝑚,𝐹,𝑛   𝑚,𝐾,𝑦,𝑧   𝑦,𝑛,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝐾(𝑛)

Proof of Theorem coprmproddvdslem
StepHypRef Expression
1 nfv 1830 . . . . 5 𝑚((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
2 nfcv 2751 . . . . 5 𝑚(𝐹𝑧)
3 simpll 786 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ∈ Fin)
4 unss 3749 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ)
5 vex 3176 . . . . . . . . . . 11 𝑧 ∈ V
65snss 4259 . . . . . . . . . 10 (𝑧 ∈ ℕ ↔ {𝑧} ⊆ ℕ)
76biimpri 217 . . . . . . . . 9 ({𝑧} ⊆ ℕ → 𝑧 ∈ ℕ)
87adantl 481 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑧 ∈ ℕ)
94, 8sylbir 224 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑧 ∈ ℕ)
109adantr 480 . . . . . 6 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝑧 ∈ ℕ)
1110adantl 481 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑧 ∈ ℕ)
12 simplr 788 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ¬ 𝑧𝑦)
13 simprrr 801 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐹:ℕ⟶ℕ)
1413adantr 480 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝐹:ℕ⟶ℕ)
15 simpl 472 . . . . . . . . . . 11 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑦 ⊆ ℕ)
164, 15sylbir 224 . . . . . . . . . 10 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ)
1716adantr 480 . . . . . . . . 9 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝑦 ⊆ ℕ)
1817adantl 481 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ⊆ ℕ)
1918sselda 3568 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝑚 ∈ ℕ)
2014, 19ffvelrnd 6268 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℕ)
2120nncnd 10913 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℂ)
22 fveq2 6103 . . . . 5 (𝑚 = 𝑧 → (𝐹𝑚) = (𝐹𝑧))
2313, 11ffvelrnd 6268 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹𝑧) ∈ ℕ)
2423nncnd 10913 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹𝑧) ∈ ℂ)
251, 2, 3, 11, 12, 21, 22, 24fprodsplitsn 14559 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) = (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))
2625ad2ant2r 779 . . 3 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) = (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))
27 simprl 790 . . . . . . . . . . . 12 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
28 simprr 792 . . . . . . . . . . . . . . 15 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝐹:ℕ⟶ℕ)
2928adantr 480 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐹:ℕ⟶ℕ)
3029adantr 480 . . . . . . . . . . . . 13 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝐹:ℕ⟶ℕ)
3117adantr 480 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ⊆ ℕ)
3231sselda 3568 . . . . . . . . . . . . 13 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝑚 ∈ ℕ)
3330, 32ffvelrnd 6268 . . . . . . . . . . . 12 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℕ)
3427, 33fprodnncl 14524 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ)
3534ex 449 . . . . . . . . . 10 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3635adantr 480 . . . . . . . . 9 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3736com12 32 . . . . . . . 8 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3837adantr 480 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ))
3938imp 444 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ)
4039nnzd 11357 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℤ)
4128, 10ffvelrnd 6268 . . . . . . . 8 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹𝑧) ∈ ℕ)
4241nnzd 11357 . . . . . . 7 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹𝑧) ∈ ℤ)
4342adantr 480 . . . . . 6 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (𝐹𝑧) ∈ ℤ)
4443adantl 481 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (𝐹𝑧) ∈ ℤ)
45 nnz 11276 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
4645adantr 480 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝐾 ∈ ℤ)
4746adantl 481 . . . . . . 7 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → 𝐾 ∈ ℤ)
4847adantr 480 . . . . . 6 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → 𝐾 ∈ ℤ)
4948adantl 481 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → 𝐾 ∈ ℤ)
5040, 44, 493jca 1235 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (∏𝑚𝑦 (𝐹𝑚) ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ))
51 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ (𝑦 ∪ {𝑧}) ⊆ ℕ) → 𝐹:ℕ⟶ℕ)
529adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ (𝑦 ∪ {𝑧}) ⊆ ℕ) → 𝑧 ∈ ℕ)
5351, 52ffvelrnd 6268 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ (𝑦 ∪ {𝑧}) ⊆ ℕ) → (𝐹𝑧) ∈ ℕ)
5453ex 449 . . . . . . . . . . . . . . 15 (𝐹:ℕ⟶ℕ → ((𝑦 ∪ {𝑧}) ⊆ ℕ → (𝐹𝑧) ∈ ℕ))
5554adantl 481 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∪ {𝑧}) ⊆ ℕ → (𝐹𝑧) ∈ ℕ))
5655impcom 445 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → (𝐹𝑧) ∈ ℕ)
5756adantl 481 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝐹𝑧) ∈ ℕ)
583, 18, 573jca 1235 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ))
5958adantr 480 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ))
6013adantr 480 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → 𝐹:ℕ⟶ℕ)
61 ralunb 3756 . . . . . . . . . . . . 13 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
6261simplbi 475 . . . . . . . . . . . 12 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
63 vsnid 4156 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ {𝑧}
6463olci 405 . . . . . . . . . . . . . . . . 17 (𝑧𝑦𝑧 ∈ {𝑧})
65 elun 3715 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
6664, 65mpbir 220 . . . . . . . . . . . . . . . 16 𝑧 ∈ (𝑦 ∪ {𝑧})
6766a1i 11 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
68 snssi 4280 . . . . . . . . . . . . . . . . . . . 20 (𝑚𝑦 → {𝑚} ⊆ 𝑦)
6968ssneld 3570 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑦 → (¬ 𝑧𝑦 → ¬ 𝑧 ∈ {𝑚}))
7069com12 32 . . . . . . . . . . . . . . . . . 18 𝑧𝑦 → (𝑚𝑦 → ¬ 𝑧 ∈ {𝑚}))
7170adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑚𝑦 → ¬ 𝑧 ∈ {𝑚}))
7271adantr 480 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑚𝑦 → ¬ 𝑧 ∈ {𝑚}))
7372imp 444 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → ¬ 𝑧 ∈ {𝑚})
7467, 73eldifd 3551 . . . . . . . . . . . . . 14 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → 𝑧 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
75 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → (𝐹𝑛) = (𝐹𝑧))
7675oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑧 → ((𝐹𝑚) gcd (𝐹𝑛)) = ((𝐹𝑚) gcd (𝐹𝑧)))
7776eqeq1d 2612 . . . . . . . . . . . . . . 15 (𝑛 = 𝑧 → (((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
7877rspcv 3278 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚}) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
7974, 78syl 17 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ 𝑚𝑦) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
8079ralimdva 2945 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
8162, 80syl5 33 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1))
8281imp 444 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1)
83 raldifb 3712 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
84 ralunb 3756 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ (∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑛 ∈ {𝑧} (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
85 raldifb 3712 . . . . . . . . . . . . . . . . . 18 (∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8685biimpi 205 . . . . . . . . . . . . . . . . 17 (∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8786adantr 480 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑛 ∈ {𝑧} (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8884, 87sylbi 206 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
8983, 88sylbir 224 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9089ralimi 2936 . . . . . . . . . . . . 13 (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9190adantr 480 . . . . . . . . . . . 12 ((∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9261, 91sylbi 206 . . . . . . . . . . 11 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
9392adantl 481 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
94 coprmprod 15213 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1) → (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
9594imp 444 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ (𝐹𝑧) ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd (𝐹𝑧)) = 1) ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1)
9659, 60, 82, 93, 95syl31anc 1321 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1)
9796ex 449 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
9897adantrd 483 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
9998expimpd 627 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
10099adantr 480 . . . . 5 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1))
101100imp 444 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1)
10284simplbi 475 . . . . . . . . . 10 (∀𝑛 ∈ (𝑦 ∪ {𝑧})(𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
10383, 102sylbir 224 . . . . . . . . 9 (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
104103ralimi 2936 . . . . . . . 8 (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
105104adantr 480 . . . . . . 7 ((∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ {𝑧}∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
10661, 105sylbi 206 . . . . . 6 (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1))
107 ralunb 3756 . . . . . . 7 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 ↔ (∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾 ∧ ∀𝑚 ∈ {𝑧} (𝐹𝑚) ∥ 𝐾))
108107simplbi 475 . . . . . 6 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 → ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)
10985ralbii 2963 . . . . . . . 8 (∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)
110109anbi1i 727 . . . . . . 7 ((∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) ↔ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
11117adantl 481 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝑦 ⊆ ℕ)
112 simprrl 800 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐾 ∈ ℕ)
113 simprrr 801 . . . . . . . . . . . . 13 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → 𝐹:ℕ⟶ℕ)
114111, 112, 113jca32 556 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
115 simplr 788 . . . . . . . . . . . 12 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
116 pm2.27 41 . . . . . . . . . . . 12 (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
117114, 115, 116syl2anc 691 . . . . . . . . . . 11 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
118117exp31 628 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))))
119118com24 93 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))))
120119imp 444 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)))
121120imp 444 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
122110, 121syl5bi 231 . . . . . 6 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚𝑦𝑛𝑦 (𝑛 ∉ {𝑚} → ((𝐹𝑚) gcd (𝐹𝑛)) = 1) ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
123106, 108, 122syl2ani 686 . . . . 5 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ))) → ((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾))
124123impr 647 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)
12522breq1d 4593 . . . . . . . . 9 (𝑚 = 𝑧 → ((𝐹𝑚) ∥ 𝐾 ↔ (𝐹𝑧) ∥ 𝐾))
126125rspcv 3278 . . . . . . . 8 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 → (𝐹𝑧) ∥ 𝐾))
12766, 126ax-mp 5 . . . . . . 7 (∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾 → (𝐹𝑧) ∥ 𝐾)
128127adantl 481 . . . . . 6 ((∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾) → (𝐹𝑧) ∥ 𝐾)
129128adantl 481 . . . . 5 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → (𝐹𝑧) ∥ 𝐾)
130129adantl 481 . . . 4 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (𝐹𝑧) ∥ 𝐾)
131 coprmdvds2 15206 . . . . 5 (((∏𝑚𝑦 (𝐹𝑚) ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1) → ((∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾 ∧ (𝐹𝑧) ∥ 𝐾) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∥ 𝐾))
132131imp 444 . . . 4 ((((∏𝑚𝑦 (𝐹𝑚) ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (∏𝑚𝑦 (𝐹𝑚) gcd (𝐹𝑧)) = 1) ∧ (∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾 ∧ (𝐹𝑧) ∥ 𝐾)) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∥ 𝐾)
13350, 101, 124, 130, 132syl22anc 1319 . . 3 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∥ 𝐾)
13426, 133eqbrtrd 4605 . 2 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾))) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)
135134exp31 628 1 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚𝑦 (𝐹𝑚) ∥ 𝐾)) → ∏𝑚𝑦 (𝐹𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) ∥ 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wnel 2781  wral 2896  cdif 3537  cun 3538  wss 3540  {csn 4125   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  1c1 9816   · cmul 9820  cn 10897  cz 11254  cprod 14474  cdvds 14821   gcd cgcd 15054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-gcd 15055
This theorem is referenced by:  coprmproddvds  15215
  Copyright terms: Public domain W3C validator