MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprimeprodsq Structured version   Visualization version   GIF version

Theorem coprimeprodsq 15351
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2)))

Proof of Theorem coprimeprodsq
StepHypRef Expression
1 nn0z 11277 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2 nn0z 11277 . . . . . . . 8 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
3 gcdcl 15066 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 gcd 𝐶) ∈ ℕ0)
41, 2, 3syl2an 493 . . . . . . 7 ((𝐴 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 gcd 𝐶) ∈ ℕ0)
543adant2 1073 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴 gcd 𝐶) ∈ ℕ0)
653ad2ant1 1075 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℕ0)
76nn0cnd 11230 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℂ)
87sqvald 12867 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 gcd 𝐶)↑2) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
9 simp13 1086 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℕ0)
109nn0cnd 11230 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℂ)
11 nn0cn 11179 . . . . . . . . . 10 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
12113ad2ant1 1075 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℂ)
13123ad2ant1 1075 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
1410, 13mulcomd 9940 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · 𝐴) = (𝐴 · 𝐶))
15 simpl3 1059 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℕ0)
1615nn0cnd 11230 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℂ)
1716sqvald 12867 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐶↑2) = (𝐶 · 𝐶))
1817eqeq1d 2612 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) ↔ (𝐶 · 𝐶) = (𝐴 · 𝐵)))
1918biimp3a 1424 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · 𝐶) = (𝐴 · 𝐵))
2014, 19oveq12d 6567 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)))
21 simp11 1084 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℕ0)
2221nn0zd 11356 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℤ)
239nn0zd 11356 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℤ)
24 mulgcd 15103 . . . . . . 7 ((𝐶 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = (𝐶 · (𝐴 gcd 𝐶)))
259, 22, 23, 24syl3anc 1318 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = (𝐶 · (𝐴 gcd 𝐶)))
26 simp12 1085 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐵 ∈ ℤ)
27 mulgcd 15103 . . . . . . 7 ((𝐴 ∈ ℕ0𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)) = (𝐴 · (𝐶 gcd 𝐵)))
2821, 23, 26, 27syl3anc 1318 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)) = (𝐴 · (𝐶 gcd 𝐵)))
2920, 25, 283eqtr3d 2652 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · (𝐴 gcd 𝐶)) = (𝐴 · (𝐶 gcd 𝐵)))
3029oveq2d 6565 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))))
31 mulgcdr 15105 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ (𝐴 gcd 𝐶) ∈ ℕ0) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
3222, 23, 6, 31syl3anc 1318 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
336nn0zd 11356 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℤ)
34 gcdcl 15066 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 gcd 𝐵) ∈ ℕ0)
352, 34sylan 487 . . . . . . . . 9 ((𝐶 ∈ ℕ0𝐵 ∈ ℤ) → (𝐶 gcd 𝐵) ∈ ℕ0)
3635ancoms 468 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℕ0)
37363adant1 1072 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℕ0)
38373ad2ant1 1075 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 gcd 𝐵) ∈ ℕ0)
3938nn0zd 11356 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 gcd 𝐵) ∈ ℤ)
40 mulgcd 15103 . . . . 5 ((𝐴 ∈ ℕ0 ∧ (𝐴 gcd 𝐶) ∈ ℤ ∧ (𝐶 gcd 𝐵) ∈ ℤ) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4121, 33, 39, 40syl3anc 1318 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4230, 32, 413eqtr3d 2652 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4323ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℤ)
44 gcdid 15086 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → (𝐶 gcd 𝐶) = (abs‘𝐶))
4543, 44syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐶) = (abs‘𝐶))
4645oveq1d 6564 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = ((abs‘𝐶) gcd 𝐵))
47 simp2 1055 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ ℤ)
48 gcdabs1 15089 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
4943, 47, 48syl2anc 691 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((abs‘𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
5046, 49eqtrd 2644 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
51 gcdass 15102 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd (𝐶 gcd 𝐵)))
5243, 43, 47, 51syl3anc 1318 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd (𝐶 gcd 𝐵)))
53 gcdcom 15073 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 gcd 𝐵) = (𝐵 gcd 𝐶))
5443, 47, 53syl2anc 691 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) = (𝐵 gcd 𝐶))
5550, 52, 543eqtr3d 2652 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd (𝐶 gcd 𝐵)) = (𝐵 gcd 𝐶))
5655oveq2d 6565 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))) = (𝐴 gcd (𝐵 gcd 𝐶)))
5713ad2ant1 1075 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℤ)
5837nn0zd 11356 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℤ)
59 gcdass 15102 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝐵) ∈ ℤ) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))))
6057, 43, 58, 59syl3anc 1318 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))))
61 gcdass 15102 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = (𝐴 gcd (𝐵 gcd 𝐶)))
6257, 47, 43, 61syl3anc 1318 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐵) gcd 𝐶) = (𝐴 gcd (𝐵 gcd 𝐶)))
6356, 60, 623eqtr4d 2654 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = ((𝐴 gcd 𝐵) gcd 𝐶))
6463eqeq1d 2612 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = 1 ↔ ((𝐴 gcd 𝐵) gcd 𝐶) = 1))
6564biimpar 501 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = 1)
6665oveq2d 6565 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = (𝐴 · 1))
67663adant3 1074 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = (𝐴 · 1))
6813mulid1d 9936 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · 1) = 𝐴)
6967, 68eqtrd 2644 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = 𝐴)
708, 42, 693eqtrrd 2649 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 = ((𝐴 gcd 𝐶)↑2))
71703expia 1259 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   · cmul 9820  2c2 10947  0cn0 11169  cz 11254  cexp 12722  abscabs 13822   gcd cgcd 15054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055
This theorem is referenced by:  coprimeprodsq2  15352  pythagtriplem6  15364
  Copyright terms: Public domain W3C validator