MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  consuba Structured version   Visualization version   GIF version

Theorem consuba 21033
Description: Connectedness for a subspace. See connsub 21034. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
consuba ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Con ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦

Proof of Theorem consuba
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resttopon 20775 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
2 dfcon2 21032 . . 3 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → ((𝐽t 𝐴) ∈ Con ↔ ∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴)))
31, 2syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Con ↔ ∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴)))
4 vex 3176 . . . . 5 𝑥 ∈ V
54inex1 4727 . . . 4 (𝑥𝐴) ∈ V
65a1i 11 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ V)
7 toponmax 20543 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
87adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
9 simpr 476 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
108, 9ssexd 4733 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
11 elrest 15911 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑢 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑢 = (𝑥𝐴)))
1210, 11syldan 486 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑢 ∈ (𝐽t 𝐴) ↔ ∃𝑥𝐽 𝑢 = (𝑥𝐴)))
13 vex 3176 . . . . . 6 𝑦 ∈ V
1413inex1 4727 . . . . 5 (𝑦𝐴) ∈ V
1514a1i 11 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑦𝐽) → (𝑦𝐴) ∈ V)
16 elrest 15911 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
1710, 16syldan 486 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
1817adantr 480 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) → (𝑣 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑣 = (𝑦𝐴)))
19 simplr 788 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → 𝑢 = (𝑥𝐴))
2019neeq1d 2841 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢 ≠ ∅ ↔ (𝑥𝐴) ≠ ∅))
21 simpr 476 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → 𝑣 = (𝑦𝐴))
2221neeq1d 2841 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑣 ≠ ∅ ↔ (𝑦𝐴) ≠ ∅))
2319, 21ineq12d 3777 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝐴) ∩ (𝑦𝐴)))
24 inindir 3793 . . . . . . . 8 ((𝑥𝑦) ∩ 𝐴) = ((𝑥𝐴) ∩ (𝑦𝐴))
2523, 24syl6eqr 2662 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝑦) ∩ 𝐴))
2625eqeq1d 2612 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢𝑣) = ∅ ↔ ((𝑥𝑦) ∩ 𝐴) = ∅))
2720, 22, 263anbi123d 1391 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) ↔ ((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅)))
2819, 21uneq12d 3730 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝐴) ∪ (𝑦𝐴)))
29 indir 3834 . . . . . . 7 ((𝑥𝑦) ∩ 𝐴) = ((𝑥𝐴) ∪ (𝑦𝐴))
3028, 29syl6eqr 2662 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (𝑢𝑣) = ((𝑥𝑦) ∩ 𝐴))
3130neeq1d 2841 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → ((𝑢𝑣) ≠ 𝐴 ↔ ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴))
3227, 31imbi12d 333 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) ∧ 𝑣 = (𝑦𝐴)) → (((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
3315, 18, 32ralxfr2d 4808 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑢 = (𝑥𝐴)) → (∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ ∀𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
346, 12, 33ralxfr2d 4808 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (𝐽t 𝐴)∀𝑣 ∈ (𝐽t 𝐴)((𝑢 ≠ ∅ ∧ 𝑣 ≠ ∅ ∧ (𝑢𝑣) = ∅) → (𝑢𝑣) ≠ 𝐴) ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
353, 34bitrd 267 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Con ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  cfv 5804  (class class class)co 6549  t crest 15904  TopOnctopon 20518  Conccon 21024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-con 21025
This theorem is referenced by:  connsub  21034  nconsubb  21036
  Copyright terms: Public domain W3C validator