Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conpcon Structured version   Visualization version   GIF version

Theorem conpcon 30471
Description: A connected and locally path-connected space is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.)
Assertion
Ref Expression
conpcon ((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) → 𝐽 ∈ PCon)

Proof of Theorem conpcon
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑔 𝑠 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 contop 21030 . . 3 (𝐽 ∈ Con → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) → 𝐽 ∈ Top)
3 eqid 2610 . . . . . 6 𝐽 = 𝐽
4 simpll 786 . . . . . 6 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → 𝐽 ∈ Con)
5 inss1 3795 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ 𝐽
6 simplr 788 . . . . . . . . . . . 12 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ 𝑛-Locally PCon)
71ad2antrr 758 . . . . . . . . . . . . 13 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽 ∈ Top)
83topopn 20536 . . . . . . . . . . . . 13 (𝐽 ∈ Top → 𝐽𝐽)
97, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝐽𝐽)
10 simprr 792 . . . . . . . . . . . 12 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) → 𝑧 𝐽)
11 nlly2i 21089 . . . . . . . . . . . 12 ((𝐽 ∈ 𝑛-Locally PCon ∧ 𝐽𝐽𝑧 𝐽) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))
126, 9, 10, 11syl3anc 1318 . . . . . . . . . . 11 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))
13 simprr1 1102 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) → 𝑧𝑢)
14 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑤))
1514anbi2d 736 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑤 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1615rexbidv 3034 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑤 → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1716elrab 3331 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑤 𝐽 ∧ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤)))
1817simprbi 479 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤))
19 simprr3 1104 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) → (𝐽t 𝑠) ∈ PCon)
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → (𝐽t 𝑠) ∈ PCon)
21 simprr2 1103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) → 𝑢𝑠)
2221adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑢𝑠)
23 simprll 798 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑢)
2422, 23sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤𝑠)
257ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝐽 ∈ Top)
26 elpwi 4117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 ∈ 𝒫 𝐽𝑠 𝐽)
2726ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) → 𝑠 𝐽)
2827adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 𝐽)
293restuni 20776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → 𝑠 = (𝐽t 𝑠))
3025, 28, 29syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑠 = (𝐽t 𝑠))
3124, 30eleqtrd 2690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑤 (𝐽t 𝑠))
32 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑢)
3322, 32sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦𝑠)
3433, 30eleqtrd 2690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → 𝑦 (𝐽t 𝑠))
35 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐽t 𝑠) = (𝐽t 𝑠)
3635pconcn 30460 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐽t 𝑠) ∈ PCon ∧ 𝑤 (𝐽t 𝑠) ∧ 𝑦 (𝐽t 𝑠)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
3720, 31, 34, 36syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃ ∈ (II Cn (𝐽t 𝑠))((‘0) = 𝑤 ∧ (‘1) = 𝑦))
38 simplrl 796 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → 𝑔 ∈ (II Cn 𝐽))
3938ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝑔 ∈ (II Cn 𝐽))
4025adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → 𝐽 ∈ Top)
41 cnrest2r 20901 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ Top → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
4240, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (II Cn (𝐽t 𝑠)) ⊆ (II Cn 𝐽))
43 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn (𝐽t 𝑠)))
4442, 43sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∈ (II Cn 𝐽))
45 simplrr 797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4645ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
4746simprd 478 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = 𝑤)
48 simprrl 800 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘0) = 𝑤)
4947, 48eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘1) = (‘0))
5039, 44, 49pcocn 22625 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽))
5139, 44pco0 22622 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = (𝑔‘0))
5246simpld 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (𝑔‘0) = 𝑥)
5351, 52eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘0) = 𝑥)
5439, 44pco1 22623 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = (‘1))
55 simprrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → (‘1) = 𝑦)
5654, 55eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ((𝑔(*𝑝𝐽))‘1) = 𝑦)
57 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘0) = ((𝑔(*𝑝𝐽))‘0))
5857eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘0) = 𝑥 ↔ ((𝑔(*𝑝𝐽))‘0) = 𝑥))
59 fveq1 6102 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = (𝑔(*𝑝𝐽)) → (𝑓‘1) = ((𝑔(*𝑝𝐽))‘1))
6059eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = (𝑔(*𝑝𝐽)) → ((𝑓‘1) = 𝑦 ↔ ((𝑔(*𝑝𝐽))‘1) = 𝑦))
6158, 60anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = (𝑔(*𝑝𝐽)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)))
6261rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑔(*𝑝𝐽)) ∈ (II Cn 𝐽) ∧ (((𝑔(*𝑝𝐽))‘0) = 𝑥 ∧ ((𝑔(*𝑝𝐽))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6350, 53, 56, 62syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) ∧ ( ∈ (II Cn (𝐽t 𝑠)) ∧ ((‘0) = 𝑤 ∧ (‘1) = 𝑦))) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6437, 63rexlimddv 3017 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ ((𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) ∧ 𝑦𝑢)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6564anassrs 678 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) ∧ 𝑦𝑢) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6665ralrimiva 2949 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ (𝑤𝑢 ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6766anassrs 678 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ 𝑤𝑢) ∧ (𝑔 ∈ (II Cn 𝐽) ∧ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
6867rexlimdvaa 3014 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
6921adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ 𝑤𝑢) → 𝑢𝑠)
70 simplrl 796 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ 𝑤𝑢) → 𝑠 ∈ 𝒫 𝐽)
7170, 26syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ 𝑤𝑢) → 𝑠 𝐽)
7269, 71sstrd 3578 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ 𝑤𝑢) → 𝑢 𝐽)
7368, 72jctild 564 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ 𝑤𝑢) → (∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤) → (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))))
74 fveq1 6102 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘0) = (𝑔‘0))
7574eqeq1d 2612 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘0) = 𝑥 ↔ (𝑔‘0) = 𝑥))
76 fveq1 6102 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (𝑓‘1) = (𝑔‘1))
7776eqeq1d 2612 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → ((𝑓‘1) = 𝑤 ↔ (𝑔‘1) = 𝑤))
7875, 77anbi12d 743 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤)))
7978cbvrexv 3148 . . . . . . . . . . . . . . . . . 18 (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) ↔ ∃𝑔 ∈ (II Cn 𝐽)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑤))
80 ssrab 3643 . . . . . . . . . . . . . . . . . 18 (𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ (𝑢 𝐽 ∧ ∀𝑦𝑢𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
8173, 79, 803imtr4g 284 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ 𝑤𝑢) → (∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑤) → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8218, 81syl5 33 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) ∧ 𝑤𝑢) → (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8382ralrimiva 2949 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) → ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))
8413, 83jca 553 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ (𝑠 ∈ 𝒫 𝐽 ∧ (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon))) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8584expr 641 . . . . . . . . . . . . 13 ((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → ((𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon) → (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8685reximdv 2999 . . . . . . . . . . . 12 ((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) ∧ 𝑠 ∈ 𝒫 𝐽) → (∃𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8786rexlimdva 3013 . . . . . . . . . . 11 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) → (∃𝑠 ∈ 𝒫 𝐽𝑢𝐽 (𝑧𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ PCon) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
8812, 87mpd 15 . . . . . . . . . 10 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ (𝑥 𝐽𝑧 𝐽)) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
8988anassrs 678 . . . . . . . . 9 ((((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) ∧ 𝑧 𝐽) → ∃𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
9089ralrimiva 2949 . . . . . . . 8 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})))
911ad2antrr 758 . . . . . . . . 9 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → 𝐽 ∈ Top)
92 ssrab2 3650 . . . . . . . . 9 {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽
933isclo2 20702 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ⊆ 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9491, 92, 93sylancl 693 . . . . . . . 8 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑧 𝐽𝑢𝐽 (𝑧𝑢 ∧ ∀𝑤𝑢 (𝑤 ∈ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} → 𝑢 ⊆ {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}))))
9590, 94mpbird 246 . . . . . . 7 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (𝐽 ∩ (Clsd‘𝐽)))
965, 95sseldi 3566 . . . . . 6 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ 𝐽)
97 simpr 476 . . . . . . . 8 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → 𝑥 𝐽)
98 iitopon 22490 . . . . . . . . . 10 II ∈ (TopOn‘(0[,]1))
9998a1i 11 . . . . . . . . 9 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → II ∈ (TopOn‘(0[,]1)))
1003toptopon 20548 . . . . . . . . . 10 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
10191, 100sylib 207 . . . . . . . . 9 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → 𝐽 ∈ (TopOn‘ 𝐽))
102 cnconst2 20897 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
10399, 101, 97, 102syl3anc 1318 . . . . . . . 8 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽))
104 0elunit 12161 . . . . . . . . 9 0 ∈ (0[,]1)
105 vex 3176 . . . . . . . . . 10 𝑥 ∈ V
106105fvconst2 6374 . . . . . . . . 9 (0 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘0) = 𝑥)
107104, 106mp1i 13 . . . . . . . 8 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘0) = 𝑥)
108 1elunit 12162 . . . . . . . . 9 1 ∈ (0[,]1)
109105fvconst2 6374 . . . . . . . . 9 (1 ∈ (0[,]1) → (((0[,]1) × {𝑥})‘1) = 𝑥)
110108, 109mp1i 13 . . . . . . . 8 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → (((0[,]1) × {𝑥})‘1) = 𝑥)
111 eqeq2 2621 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑓‘1) = 𝑦 ↔ (𝑓‘1) = 𝑥))
112111anbi2d 736 . . . . . . . . 9 (𝑦 = 𝑥 → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ ((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥)))
113 fveq1 6102 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘0) = (((0[,]1) × {𝑥})‘0))
114113eqeq1d 2612 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘0) = 𝑥 ↔ (((0[,]1) × {𝑥})‘0) = 𝑥))
115 fveq1 6102 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑥}) → (𝑓‘1) = (((0[,]1) × {𝑥})‘1))
116115eqeq1d 2612 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑥}) → ((𝑓‘1) = 𝑥 ↔ (((0[,]1) × {𝑥})‘1) = 𝑥))
117114, 116anbi12d 743 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑥}) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑥) ↔ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)))
118112, 117rspc2ev 3295 . . . . . . . 8 ((𝑥 𝐽 ∧ ((0[,]1) × {𝑥}) ∈ (II Cn 𝐽) ∧ ((((0[,]1) × {𝑥})‘0) = 𝑥 ∧ (((0[,]1) × {𝑥})‘1) = 𝑥)) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
11997, 103, 107, 110, 118syl112anc 1322 . . . . . . 7 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
120 rabn0 3912 . . . . . . 7 ({𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅ ↔ ∃𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
121119, 120sylibr 223 . . . . . 6 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ≠ ∅)
122 inss2 3796 . . . . . . 7 (𝐽 ∩ (Clsd‘𝐽)) ⊆ (Clsd‘𝐽)
123122, 95sseldi 3566 . . . . . 6 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ∈ (Clsd‘𝐽))
1243, 4, 96, 121, 123conclo 21028 . . . . 5 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} = 𝐽)
125124eqcomd 2616 . . . 4 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)})
126 rabid2 3096 . . . 4 ( 𝐽 = {𝑦 𝐽 ∣ ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} ↔ ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
127125, 126sylib 207 . . 3 (((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) ∧ 𝑥 𝐽) → ∀𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
128127ralrimiva 2949 . 2 ((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) → ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
1293ispcon 30459 . 2 (𝐽 ∈ PCon ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
1302, 128, 129sylanbrc 695 1 ((𝐽 ∈ Con ∧ 𝐽 ∈ 𝑛-Locally PCon) → 𝐽 ∈ PCon)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372   × cxp 5036  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  [,]cicc 12049  t crest 15904  Topctop 20517  TopOnctopon 20518  Clsdccld 20630   Cn ccn 20838  Conccon 21024  𝑛-Locally cnlly 21078  IIcii 22486  *𝑝cpco 22608  PConcpcon 30455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-nei 20712  df-cn 20841  df-cnp 20842  df-con 21025  df-nlly 21080  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-pco 22613  df-pcon 30457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator