Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  conndisj Structured version   Visualization version   GIF version

Theorem conndisj 21029
 Description: If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
iscon.1 𝑋 = 𝐽
conclo.1 (𝜑𝐽 ∈ Con)
conclo.2 (𝜑𝐴𝐽)
conclo.3 (𝜑𝐴 ≠ ∅)
conndisj.4 (𝜑𝐵𝐽)
conndisj.5 (𝜑𝐵 ≠ ∅)
conndisj.6 (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
conndisj (𝜑 → (𝐴𝐵) ≠ 𝑋)

Proof of Theorem conndisj
StepHypRef Expression
1 conclo.3 . 2 (𝜑𝐴 ≠ ∅)
2 conclo.2 . . . . . . 7 (𝜑𝐴𝐽)
3 elssuni 4403 . . . . . . 7 (𝐴𝐽𝐴 𝐽)
42, 3syl 17 . . . . . 6 (𝜑𝐴 𝐽)
5 iscon.1 . . . . . 6 𝑋 = 𝐽
64, 5syl6sseqr 3615 . . . . 5 (𝜑𝐴𝑋)
7 conndisj.6 . . . . 5 (𝜑 → (𝐴𝐵) = ∅)
8 uneqdifeq 4009 . . . . 5 ((𝐴𝑋 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝑋 ↔ (𝑋𝐴) = 𝐵))
96, 7, 8syl2anc 691 . . . 4 (𝜑 → ((𝐴𝐵) = 𝑋 ↔ (𝑋𝐴) = 𝐵))
10 simpr 476 . . . . . . 7 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋𝐴) = 𝐵)
1110difeq2d 3690 . . . . . 6 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋 ∖ (𝑋𝐴)) = (𝑋𝐵))
12 dfss4 3820 . . . . . . . 8 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
136, 12sylib 207 . . . . . . 7 (𝜑 → (𝑋 ∖ (𝑋𝐴)) = 𝐴)
1413adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋 ∖ (𝑋𝐴)) = 𝐴)
15 conclo.1 . . . . . . . . . 10 (𝜑𝐽 ∈ Con)
1615adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐽 ∈ Con)
17 conndisj.4 . . . . . . . . . 10 (𝜑𝐵𝐽)
1817adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐵𝐽)
19 conndisj.5 . . . . . . . . . 10 (𝜑𝐵 ≠ ∅)
2019adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐵 ≠ ∅)
215iscon 21026 . . . . . . . . . . . . . 14 (𝐽 ∈ Con ↔ (𝐽 ∈ Top ∧ (𝐽 ∩ (Clsd‘𝐽)) = {∅, 𝑋}))
2221simplbi 475 . . . . . . . . . . . . 13 (𝐽 ∈ Con → 𝐽 ∈ Top)
2315, 22syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
245opncld 20647 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝑋𝐴) ∈ (Clsd‘𝐽))
2523, 2, 24syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑋𝐴) ∈ (Clsd‘𝐽))
2625adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋𝐴) ∈ (Clsd‘𝐽))
2710, 26eqeltrrd 2689 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐵 ∈ (Clsd‘𝐽))
285, 16, 18, 20, 27conclo 21028 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐵 = 𝑋)
2928difeq2d 3690 . . . . . . 7 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋𝐵) = (𝑋𝑋))
30 difid 3902 . . . . . . 7 (𝑋𝑋) = ∅
3129, 30syl6eq 2660 . . . . . 6 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → (𝑋𝐵) = ∅)
3211, 14, 313eqtr3d 2652 . . . . 5 ((𝜑 ∧ (𝑋𝐴) = 𝐵) → 𝐴 = ∅)
3332ex 449 . . . 4 (𝜑 → ((𝑋𝐴) = 𝐵𝐴 = ∅))
349, 33sylbid 229 . . 3 (𝜑 → ((𝐴𝐵) = 𝑋𝐴 = ∅))
3534necon3d 2803 . 2 (𝜑 → (𝐴 ≠ ∅ → (𝐴𝐵) ≠ 𝑋))
361, 35mpd 15 1 (𝜑 → (𝐴𝐵) ≠ 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {cpr 4127  ∪ cuni 4372  ‘cfv 5804  Topctop 20517  Clsdccld 20630  Conccon 21024 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-top 20521  df-cld 20633  df-con 21025 This theorem is referenced by:  dfcon2  21032
 Copyright terms: Public domain W3C validator