 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  com35 Structured version   Visualization version   GIF version

Theorem com35 96
 Description: Commutation of antecedents. Swap 3rd and 5th. Deduction associated with com24 93. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com35 (𝜑 → (𝜓 → (𝜏 → (𝜃 → (𝜒𝜂)))))

Proof of Theorem com35
StepHypRef Expression
1 com5.1 . . . 4 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21com34 89 . . 3 (𝜑 → (𝜓 → (𝜃 → (𝜒 → (𝜏𝜂)))))
32com45 95 . 2 (𝜑 → (𝜓 → (𝜃 → (𝜏 → (𝜒𝜂)))))
43com34 89 1 (𝜑 → (𝜓 → (𝜏 → (𝜃 → (𝜒𝜂)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7 This theorem is referenced by:  swrdswrdlem  13311  bcthlem5  22933  3v3e3cycl1  26172  4cycl4v4e  26194  4cycl4dv4e  26196  nocvxminlem  31089  iccpartigtl  39961  nn0sumshdiglemB  42212
 Copyright terms: Public domain W3C validator