MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colmid Structured version   Visualization version   GIF version

Theorem colmid 25383
Description: Colinearity and equidistance implies midpoint. Theorem 7.20 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
colmid.m 𝑀 = (𝑆𝑋)
colmid.a (𝜑𝐴𝑃)
colmid.b (𝜑𝐵𝑃)
colmid.x (𝜑𝑋𝑃)
colmid.c (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colmid.d (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
Assertion
Ref Expression
colmid (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))

Proof of Theorem colmid
StepHypRef Expression
1 simpr 476 . . 3 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
21olcd 407 . 2 ((𝜑𝐴 = 𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
3 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
4 mirval.d . . . . 5 = (dist‘𝐺)
5 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
6 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
7 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
8 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
98ad2antrr 758 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
10 colmid.x . . . . . 6 (𝜑𝑋𝑃)
1110ad2antrr 758 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋𝑃)
12 colmid.m . . . . 5 𝑀 = (𝑆𝑋)
13 colmid.a . . . . . 6 (𝜑𝐴𝑃)
1413ad2antrr 758 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
15 colmid.b . . . . . 6 (𝜑𝐵𝑃)
1615ad2antrr 758 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
17 colmid.d . . . . . . 7 (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
1817ad2antrr 758 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐴) = (𝑋 𝐵))
1918eqcomd 2616 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐵) = (𝑋 𝐴))
20 simpr 476 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐴𝐼𝐵))
213, 4, 5, 9, 14, 11, 16, 20tgbtwncom 25183 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐵𝐼𝐴))
223, 4, 5, 6, 7, 9, 11, 12, 14, 16, 19, 21ismir 25354 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵 = (𝑀𝐴))
2322orcd 406 . . 3 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
248adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐺 ∈ TarskiG)
2515adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵𝑃)
2613adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴𝑃)
2710adantr 480 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝑋𝑃)
28 simpr 476 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝑋𝐼𝐵))
293, 4, 5, 24, 27, 26, 25, 28tgbtwncom 25183 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝑋))
303, 4, 5, 24, 26, 27tgbtwntriv1 25186 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐴𝐼𝑋))
313, 4, 5, 8, 10, 13, 10, 15, 17tgcgrcomlr 25175 . . . . . . . . . 10 (𝜑 → (𝐴 𝑋) = (𝐵 𝑋))
3231adantr 480 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐵 𝑋))
3332eqcomd 2616 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝑋) = (𝐴 𝑋))
34 eqidd 2611 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐴 𝑋))
353, 4, 5, 24, 25, 26, 27, 26, 26, 27, 29, 30, 33, 34tgcgrsub 25204 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝐴) = (𝐴 𝐴))
363, 4, 5, 24, 25, 26, 26, 35axtgcgrid 25162 . . . . . 6 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵 = 𝐴)
3736eqcomd 2616 . . . . 5 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3837adantlr 747 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3938olcd 407 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
408adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐺 ∈ TarskiG)
4113adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴𝑃)
4215adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵𝑃)
4310adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝑋𝑃)
44 simpr 476 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐴𝐼𝑋))
453, 4, 5, 40, 42, 43tgbtwntriv1 25186 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐵𝐼𝑋))
4631adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝑋) = (𝐵 𝑋))
47 eqidd 2611 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 𝑋) = (𝐵 𝑋))
483, 4, 5, 40, 41, 42, 43, 42, 42, 43, 44, 45, 46, 47tgcgrsub 25204 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝐵) = (𝐵 𝐵))
493, 4, 5, 40, 41, 42, 42, 48axtgcgrid 25162 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
5049adantlr 747 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
5150olcd 407 . . 3 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
52 df-ne 2782 . . . . 5 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
53 colmid.c . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5453orcomd 402 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝑋 ∈ (𝐴𝐿𝐵)))
5554orcanai 950 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
5652, 55sylan2b 491 . . . 4 ((𝜑𝐴𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
578adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
5813adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝑃)
5915adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝑃)
60 simpr 476 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
6110adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝑋𝑃)
623, 6, 5, 57, 58, 59, 60, 61tgellng 25248 . . . 4 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐿𝐵) ↔ (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋))))
6356, 62mpbid 221 . . 3 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋)))
6423, 39, 51, 63mpjao3dan 1387 . 2 ((𝜑𝐴𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
652, 64pm2.61dane 2869 1 (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-mir 25348
This theorem is referenced by:  symquadlem  25384  midexlem  25387
  Copyright terms: Public domain W3C validator