Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliplem | Structured version Visualization version GIF version |
Description: Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ⊢ 𝐻 ∈ V |
coinflip.t | ⊢ 𝑇 ∈ V |
coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
coinflip.2 | ⊢ 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) |
coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
Ref | Expression |
---|---|
coinfliplem | ⊢ 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.2 | . 2 ⊢ 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) | |
2 | coinflip.h | . . 3 ⊢ 𝐻 ∈ V | |
3 | simpr 476 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ 𝒫 {𝐻, 𝑇}) | |
4 | fvres 6117 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 {𝐻, 𝑇} → ((# ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (#‘𝑥)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((# ↾ 𝒫 {𝐻, 𝑇})‘𝑥) = (#‘𝑥)) |
6 | prfi 8120 | . . . . . . . 8 ⊢ {𝐻, 𝑇} ∈ Fin | |
7 | 3 | elpwid 4118 | . . . . . . . 8 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ⊆ {𝐻, 𝑇}) |
8 | ssfi 8065 | . . . . . . . 8 ⊢ (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin) | |
9 | 6, 7, 8 | sylancr 694 | . . . . . . 7 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin) |
10 | hashcl 13009 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (#‘𝑥) ∈ ℕ0) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (#‘𝑥) ∈ ℕ0) |
12 | 11 | nn0red 11229 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (#‘𝑥) ∈ ℝ) |
13 | 5, 12 | eqeltrd 2688 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → ((# ↾ 𝒫 {𝐻, 𝑇})‘𝑥) ∈ ℝ) |
14 | simpr 476 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
15 | 2re 10967 | . . . . . 6 ⊢ 2 ∈ ℝ | |
16 | 15 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ∈ ℝ) |
17 | 2ne0 10990 | . . . . . 6 ⊢ 2 ≠ 0 | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → 2 ≠ 0) |
19 | rexdiv 28965 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝑦 /𝑒 2) = (𝑦 / 2)) | |
20 | 14, 16, 18, 19 | syl3anc 1318 | . . . 4 ⊢ ((𝐻 ∈ V ∧ 𝑦 ∈ ℝ) → (𝑦 /𝑒 2) = (𝑦 / 2)) |
21 | hashresfn 12990 | . . . . 5 ⊢ (# ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇} | |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → (# ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}) |
23 | pwfi 8144 | . . . . . 6 ⊢ ({𝐻, 𝑇} ∈ Fin ↔ 𝒫 {𝐻, 𝑇} ∈ Fin) | |
24 | 6, 23 | mpbi 219 | . . . . 5 ⊢ 𝒫 {𝐻, 𝑇} ∈ Fin |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ Fin) |
26 | 15 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 2 ∈ ℝ) |
27 | 13, 20, 22, 25, 26 | ofcfeqd2 29490 | . . 3 ⊢ (𝐻 ∈ V → ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2)) |
28 | 2, 27 | ax-mp 5 | . 2 ⊢ ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 / 2) |
29 | 1, 28 | eqtr4i 2635 | 1 ⊢ 𝑃 = ((# ↾ 𝒫 {𝐻, 𝑇})∘𝑓/𝑐 /𝑒 2) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 Vcvv 3173 ⊆ wss 3540 𝒫 cpw 4108 {cpr 4127 〈cop 4131 ↾ cres 5040 Fn wfn 5799 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 ℝcr 9814 0cc0 9815 1c1 9816 / cdiv 10563 2c2 10947 ℕ0cn0 11169 #chash 12979 /𝑒 cxdiv 28956 ∘𝑓/𝑐cofc 29484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-xneg 11822 df-xmul 11824 df-hash 12980 df-xdiv 28957 df-ofc 29485 |
This theorem is referenced by: coinflipprob 29868 |
Copyright terms: Public domain | W3C validator |