MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuval Structured version   Visualization version   GIF version

Theorem cofuval 16365
Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
cofuval (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem cofuval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cofu 16343 . . 3 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
21a1i 11 . 2 (𝜑 → ∘func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩))
3 simprl 790 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
43fveq2d 6107 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑔) = (1st𝐺))
5 simprr 792 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
65fveq2d 6107 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (1st𝑓) = (1st𝐹))
74, 6coeq12d 5208 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑔) ∘ (1st𝑓)) = ((1st𝐺) ∘ (1st𝐹)))
85fveq2d 6107 . . . . . . . 8 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
98dmeqd 5248 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom (2nd𝑓) = dom (2nd𝐹))
10 cofuval.b . . . . . . . . . 10 𝐵 = (Base‘𝐶)
11 relfunc 16345 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
12 cofuval.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
13 1st2ndbr 7108 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1411, 12, 13sylancr 694 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1510, 14funcfn2 16352 . . . . . . . . 9 (𝜑 → (2nd𝐹) Fn (𝐵 × 𝐵))
16 fndm 5904 . . . . . . . . 9 ((2nd𝐹) Fn (𝐵 × 𝐵) → dom (2nd𝐹) = (𝐵 × 𝐵))
1715, 16syl 17 . . . . . . . 8 (𝜑 → dom (2nd𝐹) = (𝐵 × 𝐵))
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom (2nd𝐹) = (𝐵 × 𝐵))
199, 18eqtrd 2644 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom (2nd𝑓) = (𝐵 × 𝐵))
2019dmeqd 5248 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom dom (2nd𝑓) = dom (𝐵 × 𝐵))
21 dmxpid 5266 . . . . 5 dom (𝐵 × 𝐵) = 𝐵
2220, 21syl6eq 2660 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → dom dom (2nd𝑓) = 𝐵)
233fveq2d 6107 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
246fveq1d 6105 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
256fveq1d 6105 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((1st𝑓)‘𝑦) = ((1st𝐹)‘𝑦))
2623, 24, 25oveq123d 6570 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) = (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)))
278oveqd 6566 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
2826, 27coeq12d 5208 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
2922, 22, 28mpt2eq123dv 6615 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
307, 29opeq12d 4348 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
31 cofuval.g . . 3 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
32 elex 3185 . . 3 (𝐺 ∈ (𝐷 Func 𝐸) → 𝐺 ∈ V)
3331, 32syl 17 . 2 (𝜑𝐺 ∈ V)
34 elex 3185 . . 3 (𝐹 ∈ (𝐶 Func 𝐷) → 𝐹 ∈ V)
3512, 34syl 17 . 2 (𝜑𝐹 ∈ V)
36 opex 4859 . . 3 ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ ∈ V
3736a1i 11 . 2 (𝜑 → ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩ ∈ V)
382, 30, 33, 35, 37ovmpt2d 6686 1 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131   class class class wbr 4583   × cxp 5036  dom cdm 5038  ccom 5042  Rel wrel 5043   Fn wfn 5799  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Basecbs 15695   Func cfunc 16337  func ccofu 16339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-ixp 7795  df-func 16341  df-cofu 16343
This theorem is referenced by:  cofu1st  16366  cofu2nd  16368  cofuval2  16370  cofucl  16371  cofuass  16372  cofulid  16373  cofurid  16374  prf1st  16667  prf2nd  16668
  Copyright terms: Public domain W3C validator