 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofuass Structured version   Visualization version   GIF version

Theorem cofuass 16372
 Description: Functor composition is associative. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuass.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
cofuass.h (𝜑𝐻 ∈ (𝐷 Func 𝐸))
cofuass.k (𝜑𝐾 ∈ (𝐸 Func 𝐹))
Assertion
Ref Expression
cofuass (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = (𝐾func (𝐻func 𝐺)))

Proof of Theorem cofuass
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coass 5571 . . . 4 (((1st𝐾) ∘ (1st𝐻)) ∘ (1st𝐺)) = ((1st𝐾) ∘ ((1st𝐻) ∘ (1st𝐺)))
2 eqid 2610 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
3 cofuass.h . . . . . 6 (𝜑𝐻 ∈ (𝐷 Func 𝐸))
4 cofuass.k . . . . . 6 (𝜑𝐾 ∈ (𝐸 Func 𝐹))
52, 3, 4cofu1st 16366 . . . . 5 (𝜑 → (1st ‘(𝐾func 𝐻)) = ((1st𝐾) ∘ (1st𝐻)))
65coeq1d 5205 . . . 4 (𝜑 → ((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)) = (((1st𝐾) ∘ (1st𝐻)) ∘ (1st𝐺)))
7 eqid 2610 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
8 cofuass.g . . . . . 6 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
97, 8, 3cofu1st 16366 . . . . 5 (𝜑 → (1st ‘(𝐻func 𝐺)) = ((1st𝐻) ∘ (1st𝐺)))
109coeq2d 5206 . . . 4 (𝜑 → ((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))) = ((1st𝐾) ∘ ((1st𝐻) ∘ (1st𝐺))))
111, 6, 103eqtr4a 2670 . . 3 (𝜑 → ((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)) = ((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))))
12 coass 5571 . . . . 5 (((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ (((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦))) ∘ (𝑥(2nd𝐺)𝑦)) = ((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ ((((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))
1333ad2ant1 1075 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐻 ∈ (𝐷 Func 𝐸))
1443ad2ant1 1075 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐾 ∈ (𝐸 Func 𝐹))
15 relfunc 16345 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
16 1st2ndbr 7108 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
1715, 8, 16sylancr 694 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
18173ad2ant1 1075 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
197, 2, 18funcf1 16349 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
20 simp2 1055 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
2119, 20ffvelrnd 6268 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (Base‘𝐷))
22 simp3 1056 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
2319, 22ffvelrnd 6268 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑦) ∈ (Base‘𝐷))
242, 13, 14, 21, 23cofu2nd 16368 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) = ((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ (((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦))))
2524coeq1d 5205 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)) = (((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ (((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦))) ∘ (𝑥(2nd𝐺)𝑦)))
2683ad2ant1 1075 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐺 ∈ (𝐶 Func 𝐷))
277, 26, 13, 20cofu1 16367 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘(𝐻func 𝐺))‘𝑥) = ((1st𝐻)‘((1st𝐺)‘𝑥)))
287, 26, 13, 22cofu1 16367 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘(𝐻func 𝐺))‘𝑦) = ((1st𝐻)‘((1st𝐺)‘𝑦)))
2927, 28oveq12d 6567 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) = (((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))))
307, 26, 13, 20, 22cofu2nd 16368 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘(𝐻func 𝐺))𝑦) = ((((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))
3129, 30coeq12d 5208 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)) = ((((1st𝐻)‘((1st𝐺)‘𝑥))(2nd𝐾)((1st𝐻)‘((1st𝐺)‘𝑦))) ∘ ((((1st𝐺)‘𝑥)(2nd𝐻)((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦))))
3212, 25, 313eqtr4a 2670 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)) = ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)))
3332mpt2eq3dva 6617 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦))))
3411, 33opeq12d 4348 . 2 (𝜑 → ⟨((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))⟩ = ⟨((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)))⟩)
353, 4cofucl 16371 . . 3 (𝜑 → (𝐾func 𝐻) ∈ (𝐷 Func 𝐹))
367, 8, 35cofuval 16365 . 2 (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = ⟨((1st ‘(𝐾func 𝐻)) ∘ (1st𝐺)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐺)‘𝑥)(2nd ‘(𝐾func 𝐻))((1st𝐺)‘𝑦)) ∘ (𝑥(2nd𝐺)𝑦)))⟩)
378, 3cofucl 16371 . . 3 (𝜑 → (𝐻func 𝐺) ∈ (𝐶 Func 𝐸))
387, 37, 4cofuval 16365 . 2 (𝜑 → (𝐾func (𝐻func 𝐺)) = ⟨((1st𝐾) ∘ (1st ‘(𝐻func 𝐺))), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘(𝐻func 𝐺))‘𝑥)(2nd𝐾)((1st ‘(𝐻func 𝐺))‘𝑦)) ∘ (𝑥(2nd ‘(𝐻func 𝐺))𝑦)))⟩)
3934, 36, 383eqtr4d 2654 1 (𝜑 → ((𝐾func 𝐻) ∘func 𝐺) = (𝐾func (𝐻func 𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ⟨cop 4131   class class class wbr 4583   ∘ ccom 5042  Rel wrel 5043  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Basecbs 15695   Func cfunc 16337   ∘func ccofu 16339 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-ixp 7795  df-cat 16152  df-cid 16153  df-func 16341  df-cofu 16343 This theorem is referenced by:  catccatid  16575
 Copyright terms: Public domain W3C validator