MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofu2nd Structured version   Visualization version   GIF version

Theorem cofu2nd 16368
Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofuval.b 𝐵 = (Base‘𝐶)
cofuval.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofuval.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
cofu2nd.x (𝜑𝑋𝐵)
cofu2nd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cofu2nd (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))

Proof of Theorem cofu2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofuval.b . . . . 5 𝐵 = (Base‘𝐶)
2 cofuval.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 cofuval.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
41, 2, 3cofuval 16365 . . . 4 (𝜑 → (𝐺func 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩)
54fveq2d 6107 . . 3 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩))
6 fvex 6113 . . . . 5 (1st𝐺) ∈ V
7 fvex 6113 . . . . 5 (1st𝐹) ∈ V
86, 7coex 7011 . . . 4 ((1st𝐺) ∘ (1st𝐹)) ∈ V
9 fvex 6113 . . . . . 6 (Base‘𝐶) ∈ V
101, 9eqeltri 2684 . . . . 5 𝐵 ∈ V
1110, 10mpt2ex 7136 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))) ∈ V
128, 11op2nd 7068 . . 3 (2nd ‘⟨((1st𝐺) ∘ (1st𝐹)), (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))⟩) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
135, 12syl6eq 2660 . 2 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (𝑥𝐵, 𝑦𝐵 ↦ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦))))
14 simprl 790 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
1514fveq2d 6107 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((1st𝐹)‘𝑥) = ((1st𝐹)‘𝑋))
16 simprr 792 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
1716fveq2d 6107 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((1st𝐹)‘𝑦) = ((1st𝐹)‘𝑌))
1815, 17oveq12d 6567 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) = (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)))
1914, 16oveq12d 6567 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥(2nd𝐹)𝑦) = (𝑋(2nd𝐹)𝑌))
2018, 19coeq12d 5208 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
21 cofu2nd.x . 2 (𝜑𝑋𝐵)
22 cofu2nd.y . 2 (𝜑𝑌𝐵)
23 ovex 6577 . . . 4 (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∈ V
24 ovex 6577 . . . 4 (𝑋(2nd𝐹)𝑌) ∈ V
2523, 24coex 7011 . . 3 ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) ∈ V
2625a1i 11 . 2 (𝜑 → ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) ∈ V)
2713, 20, 21, 22, 26ovmpt2d 6686 1 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131  ccom 5042  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  Basecbs 15695   Func cfunc 16337  func ccofu 16339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-ixp 7795  df-func 16341  df-cofu 16343
This theorem is referenced by:  cofu2  16369  cofucl  16371  cofuass  16372  cofull  16417  cofth  16418  catciso  16580
  Copyright terms: Public domain W3C validator