MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemullem Structured version   Visualization version   GIF version

Theorem coemullem 23810
Description: Lemma for coemul 23812 and dgrmul 23830. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coeadd.3 𝑀 = (deg‘𝐹)
coeadd.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coemullem ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) ∧ (deg‘(𝐹𝑓 · 𝐺)) ≤ (𝑀 + 𝑁)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝑘,𝐹,𝑛   𝑘,𝑀   𝑘,𝐺,𝑛   𝑘,𝑁,𝑛   𝑆,𝑘,𝑛
Allowed substitution hint:   𝑀(𝑛)

Proof of Theorem coemullem
Dummy variables 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plymulcl 23781 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
2 coeadd.3 . . . . 5 𝑀 = (deg‘𝐹)
3 dgrcl 23793 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
42, 3syl5eqel 2692 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
5 coeadd.4 . . . . 5 𝑁 = (deg‘𝐺)
6 dgrcl 23793 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
75, 6syl5eqel 2692 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
8 nn0addcl 11205 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
94, 7, 8syl2an 493 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℕ0)
10 fzfid 12634 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (0...𝑛) ∈ Fin)
11 coefv0.1 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
1211coef3 23792 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
1312adantr 480 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
1413adantr 480 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
15 elfznn0 12302 . . . . . . 7 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
16 ffvelrn 6265 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1714, 15, 16syl2an 493 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴𝑘) ∈ ℂ)
18 coeadd.2 . . . . . . . . . 10 𝐵 = (coeff‘𝐺)
1918coef3 23792 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
2019adantl 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
2120ad2antrr 758 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → 𝐵:ℕ0⟶ℂ)
22 fznn0sub 12244 . . . . . . . 8 (𝑘 ∈ (0...𝑛) → (𝑛𝑘) ∈ ℕ0)
2322adantl 481 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → (𝑛𝑘) ∈ ℕ0)
2421, 23ffvelrnd 6268 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛𝑘)) ∈ ℂ)
2517, 24mulcld 9939 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ ℂ)
2610, 25fsumcl 14311 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) ∈ ℂ)
27 eqid 2610 . . . 4 (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))
2826, 27fmptd 6292 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))):ℕ0⟶ℂ)
29 oveq2 6557 . . . . . . . . . . 11 (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗))
30 oveq1 6556 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (𝑛𝑘) = (𝑗𝑘))
3130fveq2d 6107 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (𝐵‘(𝑛𝑘)) = (𝐵‘(𝑗𝑘)))
3231oveq2d 6565 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
3332adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑗𝑘 ∈ (0...𝑛)) → ((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = ((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
3429, 33sumeq12dv 14284 . . . . . . . . . 10 (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
35 sumex 14266 . . . . . . . . . 10 Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) ∈ V
3634, 27, 35fvmpt 6191 . . . . . . . . 9 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
3736ad2antrl 760 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
38 simp2r 1081 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ¬ 𝑗 ≤ (𝑀 + 𝑁))
39 simp2l 1080 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑗 ∈ ℕ0)
4039nn0red 11229 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑗 ∈ ℝ)
41 simp3l 1082 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘 ∈ (0...𝑗))
42 elfznn0 12302 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘 ∈ ℕ0)
4443nn0red 11229 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘 ∈ ℝ)
457adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
46453ad2ant1 1075 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑁 ∈ ℕ0)
4746nn0red 11229 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑁 ∈ ℝ)
4840, 44, 47lesubadd2d 10505 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝑗𝑘) ≤ 𝑁𝑗 ≤ (𝑘 + 𝑁)))
494adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
50493ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑀 ∈ ℕ0)
5150nn0red 11229 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑀 ∈ ℝ)
52 simp3r 1083 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝑘𝑀)
5344, 51, 47, 52leadd1dd 10520 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑘 + 𝑁) ≤ (𝑀 + 𝑁))
5444, 47readdcld 9948 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑘 + 𝑁) ∈ ℝ)
5551, 47readdcld 9948 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑀 + 𝑁) ∈ ℝ)
56 letr 10010 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℝ ∧ (𝑘 + 𝑁) ∈ ℝ ∧ (𝑀 + 𝑁) ∈ ℝ) → ((𝑗 ≤ (𝑘 + 𝑁) ∧ (𝑘 + 𝑁) ≤ (𝑀 + 𝑁)) → 𝑗 ≤ (𝑀 + 𝑁)))
5740, 54, 55, 56syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝑗 ≤ (𝑘 + 𝑁) ∧ (𝑘 + 𝑁) ≤ (𝑀 + 𝑁)) → 𝑗 ≤ (𝑀 + 𝑁)))
5853, 57mpan2d 706 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑗 ≤ (𝑘 + 𝑁) → 𝑗 ≤ (𝑀 + 𝑁)))
5948, 58sylbid 229 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝑗𝑘) ≤ 𝑁𝑗 ≤ (𝑀 + 𝑁)))
6038, 59mtod 188 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ¬ (𝑗𝑘) ≤ 𝑁)
61 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
62613ad2ant1 1075 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝐺 ∈ (Poly‘𝑆))
63 fznn0sub 12244 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...𝑗) → (𝑗𝑘) ∈ ℕ0)
6441, 63syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝑗𝑘) ∈ ℕ0)
6518, 5dgrub 23794 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ (Poly‘𝑆) ∧ (𝑗𝑘) ∈ ℕ0 ∧ (𝐵‘(𝑗𝑘)) ≠ 0) → (𝑗𝑘) ≤ 𝑁)
66653expia 1259 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ (Poly‘𝑆) ∧ (𝑗𝑘) ∈ ℕ0) → ((𝐵‘(𝑗𝑘)) ≠ 0 → (𝑗𝑘) ≤ 𝑁))
6762, 64, 66syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐵‘(𝑗𝑘)) ≠ 0 → (𝑗𝑘) ≤ 𝑁))
6867necon1bd 2800 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (¬ (𝑗𝑘) ≤ 𝑁 → (𝐵‘(𝑗𝑘)) = 0))
6960, 68mpd 15 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝐵‘(𝑗𝑘)) = 0)
7069oveq2d 6565 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = ((𝐴𝑘) · 0))
71133ad2ant1 1075 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → 𝐴:ℕ0⟶ℂ)
7271, 43ffvelrnd 6268 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → (𝐴𝑘) ∈ ℂ)
7372mul01d 10114 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐴𝑘) · 0) = 0)
7470, 73eqtrd 2644 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁)) ∧ (𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀)) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
75743expia 1259 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → ((𝑘 ∈ (0...𝑗) ∧ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0))
7675impl 648 . . . . . . . . . . 11 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
77 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
7877adantr 480 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → 𝐹 ∈ (Poly‘𝑆))
7911, 2dgrub 23794 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑀)
80793expia 1259 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
8178, 42, 80syl2an 493 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
8281necon1bd 2800 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) → (¬ 𝑘𝑀 → (𝐴𝑘) = 0))
8382imp 444 . . . . . . . . . . . . 13 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (𝐴𝑘) = 0)
8483oveq1d 6564 . . . . . . . . . . . 12 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = (0 · (𝐵‘(𝑗𝑘))))
8520ad3antrrr 762 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → 𝐵:ℕ0⟶ℂ)
8663ad2antlr 759 . . . . . . . . . . . . . 14 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (𝑗𝑘) ∈ ℕ0)
8785, 86ffvelrnd 6268 . . . . . . . . . . . . 13 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (𝐵‘(𝑗𝑘)) ∈ ℂ)
8887mul02d 10113 . . . . . . . . . . . 12 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → (0 · (𝐵‘(𝑗𝑘))) = 0)
8984, 88eqtrd 2644 . . . . . . . . . . 11 (((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
9076, 89pm2.61dan 828 . . . . . . . . . 10 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
9190sumeq2dv 14281 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = Σ𝑘 ∈ (0...𝑗)0)
92 fzfi 12633 . . . . . . . . . . 11 (0...𝑗) ∈ Fin
9392olci 405 . . . . . . . . . 10 ((0...𝑗) ⊆ (ℤ‘0) ∨ (0...𝑗) ∈ Fin)
94 sumz 14300 . . . . . . . . . 10 (((0...𝑗) ⊆ (ℤ‘0) ∨ (0...𝑗) ∈ Fin) → Σ𝑘 ∈ (0...𝑗)0 = 0)
9593, 94ax-mp 5 . . . . . . . . 9 Σ𝑘 ∈ (0...𝑗)0 = 0
9691, 95syl6eq 2660 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) = 0)
9737, 96eqtrd 2644 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ (𝑗 ∈ ℕ0 ∧ ¬ 𝑗 ≤ (𝑀 + 𝑁))) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = 0)
9897expr 641 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑗 ∈ ℕ0) → (¬ 𝑗 ≤ (𝑀 + 𝑁) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = 0))
9998necon1ad 2799 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑗 ∈ ℕ0) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁)))
10099ralrimiva 2949 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁)))
101 plyco0 23752 . . . . 5 (((𝑀 + 𝑁) ∈ ℕ0 ∧ (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))):ℕ0⟶ℂ) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁))))
1029, 28, 101syl2anc 691 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑗 ∈ ℕ0 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ≠ 0 → 𝑗 ≤ (𝑀 + 𝑁))))
103100, 102mpbird 246 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) “ (ℤ‘((𝑀 + 𝑁) + 1))) = {0})
10411, 2dgrub2 23795 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
105104adantr 480 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
10618, 5dgrub2 23795 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
107106adantl 481 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
10811, 2coeid 23798 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
109108adantr 480 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
11018, 5coeid 23798 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
111110adantl 481 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
11277, 61, 49, 45, 13, 20, 105, 107, 109, 111plymullem1 23774 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗))))
113 elfznn0 12302 . . . . . . . 8 (𝑗 ∈ (0...(𝑀 + 𝑁)) → 𝑗 ∈ ℕ0)
114113, 36syl 17 . . . . . . 7 (𝑗 ∈ (0...(𝑀 + 𝑁)) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))))
115114oveq1d 6564 . . . . . 6 (𝑗 ∈ (0...(𝑀 + 𝑁)) → (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗)) = (Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗)))
116115sumeq2i 14277 . . . . 5 Σ𝑗 ∈ (0...(𝑀 + 𝑁))(((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗)) = Σ𝑗 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗))
117116mpteq2i 4669 . . . 4 (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) · (𝐵‘(𝑗𝑘))) · (𝑧𝑗)))
118112, 117syl6eqr 2662 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...(𝑀 + 𝑁))(((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) · (𝑧𝑗))))
1191, 9, 28, 103, 118coeeq 23787 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹𝑓 · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))))
120 ffvelrn 6265 . . . 4 (((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))):ℕ0⟶ℂ ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ∈ ℂ)
12128, 113, 120syl2an 493 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))))‘𝑗) ∈ ℂ)
1221, 9, 121, 118dgrle 23803 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓 · 𝐺)) ≤ (𝑀 + 𝑁))
123119, 122jca 553 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘)))) ∧ (deg‘(𝐹𝑓 · 𝐺)) ≤ (𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145  0cn0 11169  cuz 11563  ...cfz 12197  cexp 12722  Σcsu 14264  Polycply 23744  coeffccoe 23746  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  coemul  23812  dgrmul2  23829
  Copyright terms: Public domain W3C validator