Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul3 Structured version   Visualization version   GIF version

Theorem coe1mul3 23663
 Description: The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul3.s 𝑌 = (Poly1𝑅)
coe1mul3.t = (.r𝑌)
coe1mul3.u · = (.r𝑅)
coe1mul3.b 𝐵 = (Base‘𝑌)
coe1mul3.d 𝐷 = ( deg1𝑅)
coe1mul3.r (𝜑𝑅 ∈ Ring)
coe1mul3.f1 (𝜑𝐹𝐵)
coe1mul3.f2 (𝜑𝐼 ∈ ℕ0)
coe1mul3.f3 (𝜑 → (𝐷𝐹) ≤ 𝐼)
coe1mul3.g1 (𝜑𝐺𝐵)
coe1mul3.g2 (𝜑𝐽 ∈ ℕ0)
coe1mul3.g3 (𝜑 → (𝐷𝐺) ≤ 𝐽)
Assertion
Ref Expression
coe1mul3 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))

Proof of Theorem coe1mul3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1mul3.r . . . 4 (𝜑𝑅 ∈ Ring)
2 coe1mul3.f1 . . . 4 (𝜑𝐹𝐵)
3 coe1mul3.g1 . . . 4 (𝜑𝐺𝐵)
4 coe1mul3.s . . . . 5 𝑌 = (Poly1𝑅)
5 coe1mul3.t . . . . 5 = (.r𝑌)
6 coe1mul3.u . . . . 5 · = (.r𝑅)
7 coe1mul3.b . . . . 5 𝐵 = (Base‘𝑌)
84, 5, 6, 7coe1mul 19461 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
91, 2, 3, 8syl3anc 1318 . . 3 (𝜑 → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
109fveq1d 6105 . 2 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)))
11 coe1mul3.f2 . . . 4 (𝜑𝐼 ∈ ℕ0)
12 coe1mul3.g2 . . . 4 (𝜑𝐽 ∈ ℕ0)
1311, 12nn0addcld 11232 . . 3 (𝜑 → (𝐼 + 𝐽) ∈ ℕ0)
14 oveq2 6557 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (0...𝑥) = (0...(𝐼 + 𝐽)))
15 oveq1 6556 . . . . . . . 8 (𝑥 = (𝐼 + 𝐽) → (𝑥𝑦) = ((𝐼 + 𝐽) − 𝑦))
1615fveq2d 6107 . . . . . . 7 (𝑥 = (𝐼 + 𝐽) → ((coe1𝐺)‘(𝑥𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))
1716oveq2d 6565 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))) = (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
1814, 17mpteq12dv 4663 . . . . 5 (𝑥 = (𝐼 + 𝐽) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))))
1918oveq2d 6565 . . . 4 (𝑥 = (𝐼 + 𝐽) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
20 eqid 2610 . . . 4 (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))
21 ovex 6577 . . . 4 (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) ∈ V
2219, 20, 21fvmpt 6191 . . 3 ((𝐼 + 𝐽) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
2313, 22syl 17 . 2 (𝜑 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
24 eqid 2610 . . . 4 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2610 . . . 4 (0g𝑅) = (0g𝑅)
26 ringmnd 18379 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
271, 26syl 17 . . . 4 (𝜑𝑅 ∈ Mnd)
28 ovex 6577 . . . . 5 (0...(𝐼 + 𝐽)) ∈ V
2928a1i 11 . . . 4 (𝜑 → (0...(𝐼 + 𝐽)) ∈ V)
3011nn0red 11229 . . . . . 6 (𝜑𝐼 ∈ ℝ)
31 nn0addge1 11216 . . . . . 6 ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℕ0) → 𝐼 ≤ (𝐼 + 𝐽))
3230, 12, 31syl2anc 691 . . . . 5 (𝜑𝐼 ≤ (𝐼 + 𝐽))
33 fznn0 12301 . . . . . 6 ((𝐼 + 𝐽) ∈ ℕ0 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3413, 33syl 17 . . . . 5 (𝜑 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3511, 32, 34mpbir2and 959 . . . 4 (𝜑𝐼 ∈ (0...(𝐼 + 𝐽)))
361adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑅 ∈ Ring)
37 eqid 2610 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
3837, 7, 4, 24coe1f 19402 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
392, 38syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
40 elfznn0 12302 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → 𝑦 ∈ ℕ0)
41 ffvelrn 6265 . . . . . . 7 (((coe1𝐹):ℕ0⟶(Base‘𝑅) ∧ 𝑦 ∈ ℕ0) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
4239, 40, 41syl2an 493 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
43 eqid 2610 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
4443, 7, 4, 24coe1f 19402 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
453, 44syl 17 . . . . . . 7 (𝜑 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
46 fznn0sub 12244 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
47 ffvelrn 6265 . . . . . . 7 (((coe1𝐺):ℕ0⟶(Base‘𝑅) ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4845, 46, 47syl2an 493 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4924, 6ringcl 18384 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
5036, 42, 48, 49syl3anc 1318 . . . . 5 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
51 eqid 2610 . . . . 5 (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
5250, 51fmptd 6292 . . . 4 (𝜑 → (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))):(0...(𝐼 + 𝐽))⟶(Base‘𝑅))
53 eldifsn 4260 . . . . . 6 (𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼}) ↔ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼))
5440adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℕ0)
5554nn0red 11229 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ)
5630adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐼 ∈ ℝ)
5755, 56lttri2d 10055 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 ↔ (𝑦 < 𝐼𝐼 < 𝑦)))
583ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐺𝐵)
5946adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
6059adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
61 coe1mul3.d . . . . . . . . . . . . . . . . 17 𝐷 = ( deg1𝑅)
6261, 4, 7deg1xrcl 23646 . . . . . . . . . . . . . . . 16 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
633, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ∈ ℝ*)
6463ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ∈ ℝ*)
6512nn0red 11229 . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ ℝ)
6665rexrd 9968 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℝ*)
6766ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 ∈ ℝ*)
6813nn0red 11229 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 𝐽) ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝐼 + 𝐽) ∈ ℝ)
7069, 55resubcld 10337 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ)
7170rexrd 9968 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
7271adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
73 coe1mul3.g3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ≤ 𝐽)
7473ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ≤ 𝐽)
7565adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐽 ∈ ℝ)
7655, 56, 75ltadd1d 10499 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ (𝑦 + 𝐽) < (𝐼 + 𝐽)))
7755, 75, 69ltaddsub2d 10507 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 + 𝐽) < (𝐼 + 𝐽) ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7876, 77bitrd 267 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7978biimpa 500 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 < ((𝐼 + 𝐽) − 𝑦))
8064, 67, 72, 74, 79xrlelttrd 11867 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦))
8161, 4, 7, 25, 43deg1lt 23661 . . . . . . . . . . . . 13 ((𝐺𝐵 ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0 ∧ (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦)) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
8258, 60, 80, 81syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
8382oveq2d 6565 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝑦) · (0g𝑅)))
8424, 6, 25ringrz 18411 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8536, 42, 84syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8685adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8783, 86eqtrd 2644 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
882ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐹𝐵)
8954adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℕ0)
9061, 4, 7deg1xrcl 23646 . . . . . . . . . . . . . . . 16 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
912, 90syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ∈ ℝ*)
9291ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ∈ ℝ*)
9330rexrd 9968 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ*)
9493ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 ∈ ℝ*)
9555rexrd 9968 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ*)
9695adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℝ*)
97 coe1mul3.f3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ≤ 𝐼)
9897ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ≤ 𝐼)
99 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 < 𝑦)
10092, 94, 96, 98, 99xrlelttrd 11867 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) < 𝑦)
10161, 4, 7, 25, 37deg1lt 23661 . . . . . . . . . . . . 13 ((𝐹𝐵𝑦 ∈ ℕ0 ∧ (𝐷𝐹) < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
10288, 89, 100, 101syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
103102oveq1d 6564 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
10424, 6, 25ringlz 18410 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10536, 48, 104syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
106105adantr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
107103, 106eqtrd 2644 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10887, 107jaodan 822 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ (𝑦 < 𝐼𝐼 < 𝑦)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
109108ex 449 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 < 𝐼𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
11057, 109sylbid 229 . . . . . . 7 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
111110impr 647 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
11253, 111sylan2b 491 . . . . 5 ((𝜑𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼})) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
113112, 29suppss2 7216 . . . 4 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) supp (0g𝑅)) ⊆ {𝐼})
11424, 25, 27, 29, 35, 52, 113gsumpt 18184 . . 3 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼))
115 fveq2 6103 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐹)‘𝑦) = ((coe1𝐹)‘𝐼))
116 oveq2 6557 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼 + 𝐽) − 𝑦) = ((𝐼 + 𝐽) − 𝐼))
117116fveq2d 6107 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)))
118115, 117oveq12d 6567 . . . . 5 (𝑦 = 𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
119 ovex 6577 . . . . 5 (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) ∈ V
120118, 51, 119fvmpt 6191 . . . 4 (𝐼 ∈ (0...(𝐼 + 𝐽)) → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
12135, 120syl 17 . . 3 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
12211nn0cnd 11230 . . . . . 6 (𝜑𝐼 ∈ ℂ)
12312nn0cnd 11230 . . . . . 6 (𝜑𝐽 ∈ ℂ)
124122, 123pncan2d 10273 . . . . 5 (𝜑 → ((𝐼 + 𝐽) − 𝐼) = 𝐽)
125124fveq2d 6107 . . . 4 (𝜑 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)) = ((coe1𝐺)‘𝐽))
126125oveq2d 6565 . . 3 (𝜑 → (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
127114, 121, 1263eqtrd 2648 . 2 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
12810, 23, 1273eqtrd 2648 1 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173   ∖ cdif 3537  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815   + caddc 9818  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145  ℕ0cn0 11169  ...cfz 12197  Basecbs 15695  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Ringcrg 18370  Poly1cpl1 19368  coe1cco1 19369   deg1 cdg1 23618 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-psr 19177  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-ply1 19373  df-coe1 19374  df-cnfld 19568  df-mdeg 23619  df-deg1 23620 This theorem is referenced by:  coe1mul4  23664
 Copyright terms: Public domain W3C validator