Step | Hyp | Ref
| Expression |
1 | | coe1mul3.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
2 | | coe1mul3.f1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
3 | | coe1mul3.g1 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
4 | | coe1mul3.s |
. . . . 5
⊢ 𝑌 = (Poly1‘𝑅) |
5 | | coe1mul3.t |
. . . . 5
⊢ ∙ =
(.r‘𝑌) |
6 | | coe1mul3.u |
. . . . 5
⊢ · =
(.r‘𝑅) |
7 | | coe1mul3.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
8 | 4, 5, 6, 7 | coe1mul 19461 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))) |
9 | 1, 2, 3, 8 | syl3anc 1318 |
. . 3
⊢ (𝜑 →
(coe1‘(𝐹
∙
𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))) |
10 | 9 | fveq1d 6105 |
. 2
⊢ (𝜑 →
((coe1‘(𝐹
∙
𝐺))‘(𝐼 + 𝐽)) = ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))‘(𝐼 + 𝐽))) |
11 | | coe1mul3.f2 |
. . . 4
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
12 | | coe1mul3.g2 |
. . . 4
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
13 | 11, 12 | nn0addcld 11232 |
. . 3
⊢ (𝜑 → (𝐼 + 𝐽) ∈
ℕ0) |
14 | | oveq2 6557 |
. . . . . 6
⊢ (𝑥 = (𝐼 + 𝐽) → (0...𝑥) = (0...(𝐼 + 𝐽))) |
15 | | oveq1 6556 |
. . . . . . . 8
⊢ (𝑥 = (𝐼 + 𝐽) → (𝑥 − 𝑦) = ((𝐼 + 𝐽) − 𝑦)) |
16 | 15 | fveq2d 6107 |
. . . . . . 7
⊢ (𝑥 = (𝐼 + 𝐽) → ((coe1‘𝐺)‘(𝑥 − 𝑦)) = ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) |
17 | 16 | oveq2d 6565 |
. . . . . 6
⊢ (𝑥 = (𝐼 + 𝐽) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))) = (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) |
18 | 14, 17 | mpteq12dv 4663 |
. . . . 5
⊢ (𝑥 = (𝐼 + 𝐽) → (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) |
19 | 18 | oveq2d 6565 |
. . . 4
⊢ (𝑥 = (𝐼 + 𝐽) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))))) |
20 | | eqid 2610 |
. . . 4
⊢ (𝑥 ∈ ℕ0
↦ (𝑅
Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦)))))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦)))))) |
21 | | ovex 6577 |
. . . 4
⊢ (𝑅 Σg
(𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) ∈ V |
22 | 19, 20, 21 | fvmpt 6191 |
. . 3
⊢ ((𝐼 + 𝐽) ∈ ℕ0 → ((𝑥 ∈ ℕ0
↦ (𝑅
Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))))) |
23 | 13, 22 | syl 17 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg
(𝑦 ∈ (0...𝑥) ↦
(((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘(𝑥 − 𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))))) |
24 | | eqid 2610 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
25 | | eqid 2610 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
26 | | ringmnd 18379 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
27 | 1, 26 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Mnd) |
28 | | ovex 6577 |
. . . . 5
⊢
(0...(𝐼 + 𝐽)) ∈ V |
29 | 28 | a1i 11 |
. . . 4
⊢ (𝜑 → (0...(𝐼 + 𝐽)) ∈ V) |
30 | 11 | nn0red 11229 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℝ) |
31 | | nn0addge1 11216 |
. . . . . 6
⊢ ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℕ0)
→ 𝐼 ≤ (𝐼 + 𝐽)) |
32 | 30, 12, 31 | syl2anc 691 |
. . . . 5
⊢ (𝜑 → 𝐼 ≤ (𝐼 + 𝐽)) |
33 | | fznn0 12301 |
. . . . . 6
⊢ ((𝐼 + 𝐽) ∈ ℕ0 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0 ∧ 𝐼 ≤ (𝐼 + 𝐽)))) |
34 | 13, 33 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0 ∧ 𝐼 ≤ (𝐼 + 𝐽)))) |
35 | 11, 32, 34 | mpbir2and 959 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ (0...(𝐼 + 𝐽))) |
36 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑅 ∈ Ring) |
37 | | eqid 2610 |
. . . . . . . . 9
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
38 | 37, 7, 4, 24 | coe1f 19402 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
39 | 2, 38 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
40 | | elfznn0 12302 |
. . . . . . 7
⊢ (𝑦 ∈ (0...(𝐼 + 𝐽)) → 𝑦 ∈ ℕ0) |
41 | | ffvelrn 6265 |
. . . . . . 7
⊢
(((coe1‘𝐹):ℕ0⟶(Base‘𝑅) ∧ 𝑦 ∈ ℕ0) →
((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅)) |
42 | 39, 40, 41 | syl2an 493 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅)) |
43 | | eqid 2610 |
. . . . . . . . 9
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
44 | 43, 7, 4, 24 | coe1f 19402 |
. . . . . . . 8
⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
45 | 3, 44 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
46 | | fznn0sub 12244 |
. . . . . . 7
⊢ (𝑦 ∈ (0...(𝐼 + 𝐽)) → ((𝐼 + 𝐽) − 𝑦) ∈
ℕ0) |
47 | | ffvelrn 6265 |
. . . . . . 7
⊢
(((coe1‘𝐺):ℕ0⟶(Base‘𝑅) ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0) →
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) |
48 | 45, 46, 47 | syl2an 493 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) |
49 | 24, 6 | ringcl 18384 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅) ∧ ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅)) |
50 | 36, 42, 48, 49 | syl3anc 1318 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅)) |
51 | | eqid 2610 |
. . . . 5
⊢ (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) |
52 | 50, 51 | fmptd 6292 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))):(0...(𝐼 + 𝐽))⟶(Base‘𝑅)) |
53 | | eldifsn 4260 |
. . . . . 6
⊢ (𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼}) ↔ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦 ≠ 𝐼)) |
54 | 40 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℕ0) |
55 | 54 | nn0red 11229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ) |
56 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐼 ∈ ℝ) |
57 | 55, 56 | lttri2d 10055 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 ≠ 𝐼 ↔ (𝑦 < 𝐼 ∨ 𝐼 < 𝑦))) |
58 | 3 | ad2antrr 758 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐺 ∈ 𝐵) |
59 | 46 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈
ℕ0) |
60 | 59 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈
ℕ0) |
61 | | coe1mul3.d |
. . . . . . . . . . . . . . . . 17
⊢ 𝐷 = ( deg1
‘𝑅) |
62 | 61, 4, 7 | deg1xrcl 23646 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈
ℝ*) |
63 | 3, 62 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℝ*) |
64 | 63 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷‘𝐺) ∈
ℝ*) |
65 | 12 | nn0red 11229 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐽 ∈ ℝ) |
66 | 65 | rexrd 9968 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈
ℝ*) |
67 | 66 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 ∈
ℝ*) |
68 | 13 | nn0red 11229 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐼 + 𝐽) ∈ ℝ) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝐼 + 𝐽) ∈ ℝ) |
70 | 69, 55 | resubcld 10337 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ) |
71 | 70 | rexrd 9968 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈
ℝ*) |
72 | 71 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈
ℝ*) |
73 | | coe1mul3.g3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐽) |
74 | 73 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷‘𝐺) ≤ 𝐽) |
75 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐽 ∈ ℝ) |
76 | 55, 56, 75 | ltadd1d 10499 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ (𝑦 + 𝐽) < (𝐼 + 𝐽))) |
77 | 55, 75, 69 | ltaddsub2d 10507 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 + 𝐽) < (𝐼 + 𝐽) ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦))) |
78 | 76, 77 | bitrd 267 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦))) |
79 | 78 | biimpa 500 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 < ((𝐼 + 𝐽) − 𝑦)) |
80 | 64, 67, 72, 74, 79 | xrlelttrd 11867 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷‘𝐺) < ((𝐼 + 𝐽) − 𝑦)) |
81 | 61, 4, 7, 25, 43 | deg1lt 23661 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ 𝐵 ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0 ∧ (𝐷‘𝐺) < ((𝐼 + 𝐽) − 𝑦)) → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g‘𝑅)) |
82 | 58, 60, 80, 81 | syl3anc 1318 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g‘𝑅)) |
83 | 82 | oveq2d 6565 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅))) |
84 | 24, 6, 25 | ringrz 18411 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑦) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
85 | 36, 42, 84 | syl2anc 691 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
86 | 85 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1‘𝐹)‘𝑦) ·
(0g‘𝑅)) =
(0g‘𝑅)) |
87 | 83, 86 | eqtrd 2644 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
88 | 2 | ad2antrr 758 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐹 ∈ 𝐵) |
89 | 54 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℕ0) |
90 | 61, 4, 7 | deg1xrcl 23646 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈
ℝ*) |
91 | 2, 90 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℝ*) |
92 | 91 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷‘𝐹) ∈
ℝ*) |
93 | 30 | rexrd 9968 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐼 ∈
ℝ*) |
94 | 93 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 ∈
ℝ*) |
95 | 55 | rexrd 9968 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ*) |
96 | 95 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℝ*) |
97 | | coe1mul3.f3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐼) |
98 | 97 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷‘𝐹) ≤ 𝐼) |
99 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 < 𝑦) |
100 | 92, 94, 96, 98, 99 | xrlelttrd 11867 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷‘𝐹) < 𝑦) |
101 | 61, 4, 7, 25, 37 | deg1lt 23661 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑦 ∈ ℕ0 ∧ (𝐷‘𝐹) < 𝑦) → ((coe1‘𝐹)‘𝑦) = (0g‘𝑅)) |
102 | 88, 89, 100, 101 | syl3anc 1318 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((coe1‘𝐹)‘𝑦) = (0g‘𝑅)) |
103 | 102 | oveq1d 6564 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) |
104 | 24, 6, 25 | ringlz 18410 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
105 | 36, 48, 104 | syl2anc 691 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
106 | 105 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((0g‘𝑅) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
107 | 103, 106 | eqtrd 2644 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
108 | 87, 107 | jaodan 822 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ (𝑦 < 𝐼 ∨ 𝐼 < 𝑦)) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
109 | 108 | ex 449 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 < 𝐼 ∨ 𝐼 < 𝑦) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅))) |
110 | 57, 109 | sylbid 229 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 ≠ 𝐼 → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅))) |
111 | 110 | impr 647 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦 ≠ 𝐼)) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
112 | 53, 111 | sylan2b 491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼})) → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g‘𝑅)) |
113 | 112, 29 | suppss2 7216 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)))) supp (0g‘𝑅)) ⊆ {𝐼}) |
114 | 24, 25, 27, 29, 35, 52, 113 | gsumpt 18184 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼)) |
115 | | fveq2 6103 |
. . . . . 6
⊢ (𝑦 = 𝐼 → ((coe1‘𝐹)‘𝑦) = ((coe1‘𝐹)‘𝐼)) |
116 | | oveq2 6557 |
. . . . . . 7
⊢ (𝑦 = 𝐼 → ((𝐼 + 𝐽) − 𝑦) = ((𝐼 + 𝐽) − 𝐼)) |
117 | 116 | fveq2d 6107 |
. . . . . 6
⊢ (𝑦 = 𝐼 → ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦)) = ((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼))) |
118 | 115, 117 | oveq12d 6567 |
. . . . 5
⊢ (𝑦 = 𝐼 → (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)))) |
119 | | ovex 6577 |
. . . . 5
⊢
(((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼))) ∈ V |
120 | 118, 51, 119 | fvmpt 6191 |
. . . 4
⊢ (𝐼 ∈ (0...(𝐼 + 𝐽)) → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)))) |
121 | 35, 120 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)))) |
122 | 11 | nn0cnd 11230 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ ℂ) |
123 | 12 | nn0cnd 11230 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ ℂ) |
124 | 122, 123 | pncan2d 10273 |
. . . . 5
⊢ (𝜑 → ((𝐼 + 𝐽) − 𝐼) = 𝐽) |
125 | 124 | fveq2d 6107 |
. . . 4
⊢ (𝜑 →
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼)) = ((coe1‘𝐺)‘𝐽)) |
126 | 125 | oveq2d 6565 |
. . 3
⊢ (𝜑 →
(((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝐼))) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘𝐽))) |
127 | 114, 121,
126 | 3eqtrd 2648 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1‘𝐹)‘𝑦) ·
((coe1‘𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘𝐽))) |
128 | 10, 23, 127 | 3eqtrd 2648 |
1
⊢ (𝜑 →
((coe1‘(𝐹
∙
𝐺))‘(𝐼 + 𝐽)) = (((coe1‘𝐹)‘𝐼) ·
((coe1‘𝐺)‘𝐽))) |