Proof of Theorem coe1mul2lem2
Step | Hyp | Ref
| Expression |
1 | | df1o2 7459 |
. . . . 5
⊢
1𝑜 = {∅} |
2 | | nn0ex 11175 |
. . . . 5
⊢
ℕ0 ∈ V |
3 | | 0ex 4718 |
. . . . 5
⊢ ∅
∈ V |
4 | | eqid 2610 |
. . . . 5
⊢ (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) = (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) |
5 | 1, 2, 3, 4 | mapsnf1o2 7791 |
. . . 4
⊢ (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 |
6 | | f1of1 6049 |
. . . 4
⊢ ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1→ℕ0) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢ (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1→ℕ0 |
8 | | coe1mul2lem2.h |
. . . . 5
⊢ 𝐻 = {𝑑 ∈ (ℕ0
↑𝑚 1𝑜) ∣ 𝑑 ∘𝑟 ≤
(1𝑜 × {𝑘})} |
9 | | ssrab2 3650 |
. . . . 5
⊢ {𝑑 ∈ (ℕ0
↑𝑚 1𝑜) ∣ 𝑑 ∘𝑟 ≤
(1𝑜 × {𝑘})} ⊆ (ℕ0
↑𝑚 1𝑜) |
10 | 8, 9 | eqsstri 3598 |
. . . 4
⊢ 𝐻 ⊆ (ℕ0
↑𝑚 1𝑜) |
11 | 10 | a1i 11 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ 𝐻 ⊆
(ℕ0 ↑𝑚
1𝑜)) |
12 | | f1ores 6064 |
. . 3
⊢ (((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1→ℕ0 ∧ 𝐻 ⊆ (ℕ0
↑𝑚 1𝑜)) → ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ 𝐻)) |
13 | 7, 11, 12 | sylancr 694 |
. 2
⊢ (𝑘 ∈ ℕ0
→ ((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) ↾
𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ 𝐻)) |
14 | | coe1mul2lem1 19458 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑑 ∈
(ℕ0 ↑𝑚 1𝑜)) →
(𝑑
∘𝑟 ≤ (1𝑜 × {𝑘}) ↔ (𝑑‘∅) ∈ (0...𝑘))) |
15 | 14 | rabbidva 3163 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ {𝑑 ∈
(ℕ0 ↑𝑚 1𝑜) ∣
𝑑
∘𝑟 ≤ (1𝑜 × {𝑘})} = {𝑑 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑑‘∅) ∈ (0...𝑘)}) |
16 | | fveq1 6102 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑐‘∅) = (𝑑‘∅)) |
17 | 16 | eleq1d 2672 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ((𝑐‘∅) ∈ (0...𝑘) ↔ (𝑑‘∅) ∈ (0...𝑘))) |
18 | 17 | cbvrabv 3172 |
. . . . . . . 8
⊢ {𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑐‘∅) ∈ (0...𝑘)} = {𝑑 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑑‘∅) ∈ (0...𝑘)} |
19 | 15, 18 | syl6eqr 2662 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ {𝑑 ∈
(ℕ0 ↑𝑚 1𝑜) ∣
𝑑
∘𝑟 ≤ (1𝑜 × {𝑘})} = {𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑐‘∅) ∈ (0...𝑘)}) |
20 | 4 | mptpreima 5545 |
. . . . . . 7
⊢ (◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘)) = {𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ∣ (𝑐‘∅) ∈ (0...𝑘)} |
21 | 19, 8, 20 | 3eqtr4g 2669 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ 𝐻 = (◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘))) |
22 | 21 | imaeq2d 5385 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) “
𝐻) = ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘)))) |
23 | | f1ofo 6057 |
. . . . . . 7
⊢ ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0) |
24 | 5, 23 | ax-mp 5 |
. . . . . 6
⊢ (𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0 |
25 | | fz0ssnn0 12304 |
. . . . . 6
⊢
(0...𝑘) ⊆
ℕ0 |
26 | | foimacnv 6067 |
. . . . . 6
⊢ (((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0 ∧ (0...𝑘) ⊆ ℕ0)
→ ((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) “
(◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘)) |
27 | 24, 25, 26 | mp2an 704 |
. . . . 5
⊢ ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (◡(𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘) |
28 | 22, 27 | syl6eq 2660 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ ((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) “
𝐻) = (0...𝑘)) |
29 | 28 | f1oeq3d 6047 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ (((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) ↾
𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ 𝐻) ↔ ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→(0...𝑘))) |
30 | | resmpt 5369 |
. . . 4
⊢ (𝐻 ⊆ (ℕ0
↑𝑚 1𝑜) → ((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐 ∈ 𝐻 ↦ (𝑐‘∅))) |
31 | | f1oeq1 6040 |
. . . 4
⊢ (((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)) → (((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→(0...𝑘) ↔ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘))) |
32 | 11, 30, 31 | 3syl 18 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ (((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) ↾
𝐻):𝐻–1-1-onto→(0...𝑘) ↔ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘))) |
33 | 29, 32 | bitrd 267 |
. 2
⊢ (𝑘 ∈ ℕ0
→ (((𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ↦
(𝑐‘∅)) ↾
𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑐‘∅)) “ 𝐻) ↔ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘))) |
34 | 13, 33 | mpbid 221 |
1
⊢ (𝑘 ∈ ℕ0
→ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘)) |