Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2 Structured version   Visualization version   GIF version

Theorem coe1mul2 19460
 Description: The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul2.s 𝑆 = (PwSer1𝑅)
coe1mul2.t = (.r𝑆)
coe1mul2.u · = (.r𝑅)
coe1mul2.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
coe1mul2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   · ,𝑘,𝑥   𝑘,𝐺,𝑥   𝑅,𝑘,𝑥   ,𝑘
Allowed substitution hints:   𝑆(𝑥,𝑘)   (𝑥)

Proof of Theorem coe1mul2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6007 . . . . 5 (𝑘 ∈ ℕ0 → (1𝑜 × {𝑘}):1𝑜⟶ℕ0)
2 nn0ex 11175 . . . . . 6 0 ∈ V
3 1on 7454 . . . . . . 7 1𝑜 ∈ On
43elexi 3186 . . . . . 6 1𝑜 ∈ V
52, 4elmap 7772 . . . . 5 ((1𝑜 × {𝑘}) ∈ (ℕ0𝑚 1𝑜) ↔ (1𝑜 × {𝑘}):1𝑜⟶ℕ0)
61, 5sylibr 223 . . . 4 (𝑘 ∈ ℕ0 → (1𝑜 × {𝑘}) ∈ (ℕ0𝑚 1𝑜))
76adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (1𝑜 × {𝑘}) ∈ (ℕ0𝑚 1𝑜))
8 eqidd 2611 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘})))
9 eqid 2610 . . . 4 (1𝑜 mPwSer 𝑅) = (1𝑜 mPwSer 𝑅)
10 coe1mul2.s . . . . 5 𝑆 = (PwSer1𝑅)
11 coe1mul2.b . . . . 5 𝐵 = (Base‘𝑆)
1210, 11, 9psr1bas2 19381 . . . 4 𝐵 = (Base‘(1𝑜 mPwSer 𝑅))
13 coe1mul2.u . . . 4 · = (.r𝑅)
14 coe1mul2.t . . . . 5 = (.r𝑆)
1510, 9, 14psr1mulr 19415 . . . 4 = (.r‘(1𝑜 mPwSer 𝑅))
16 psr1baslem 19376 . . . 4 (ℕ0𝑚 1𝑜) = {𝑎 ∈ (ℕ0𝑚 1𝑜) ∣ (𝑎 “ ℕ) ∈ Fin}
17 simp2 1055 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
18 simp3 1056 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
199, 12, 13, 15, 16, 17, 18psrmulfval 19206 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ (ℕ0𝑚 1𝑜) ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏𝑓𝑐)))))))
20 breq2 4587 . . . . . 6 (𝑏 = (1𝑜 × {𝑘}) → (𝑑𝑟𝑏𝑑𝑟 ≤ (1𝑜 × {𝑘})))
2120rabbidv 3164 . . . . 5 (𝑏 = (1𝑜 × {𝑘}) → {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟𝑏} = {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})})
22 oveq1 6556 . . . . . . 7 (𝑏 = (1𝑜 × {𝑘}) → (𝑏𝑓𝑐) = ((1𝑜 × {𝑘}) ∘𝑓𝑐))
2322fveq2d 6107 . . . . . 6 (𝑏 = (1𝑜 × {𝑘}) → (𝐺‘(𝑏𝑓𝑐)) = (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))
2423oveq2d 6565 . . . . 5 (𝑏 = (1𝑜 × {𝑘}) → ((𝐹𝑐) · (𝐺‘(𝑏𝑓𝑐))) = ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))))
2521, 24mpteq12dv 4663 . . . 4 (𝑏 = (1𝑜 × {𝑘}) → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏𝑓𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))))
2625oveq2d 6565 . . 3 (𝑏 = (1𝑜 × {𝑘}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏𝑓𝑐))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))))))
277, 8, 19, 26fmptco 6303 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘}))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))))))
2810psr1ring 19438 . . . 4 (𝑅 ∈ Ring → 𝑆 ∈ Ring)
2911, 14ringcl 18384 . . . 4 ((𝑆 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
3028, 29syl3an1 1351 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
31 eqid 2610 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
32 eqid 2610 . . . 4 (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘}))
3331, 11, 10, 32coe1fval3 19399 . . 3 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘}))))
3430, 33syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1𝑜 × {𝑘}))))
35 eqid 2610 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
36 eqid 2610 . . . . 5 (0g𝑅) = (0g𝑅)
37 simpl1 1057 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
38 ringcmn 18404 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
3937, 38syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
40 fzfi 12633 . . . . . 6 (0...𝑘) ∈ Fin
4140a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
42 simpll1 1093 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
43 simpll2 1094 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐹𝐵)
44 eqid 2610 . . . . . . . . . 10 (coe1𝐹) = (coe1𝐹)
4544, 11, 10, 35coe1f2 19400 . . . . . . . . 9 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
4643, 45syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
47 elfznn0 12302 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℕ0)
4847adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑥 ∈ ℕ0)
4946, 48ffvelrnd 6268 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅))
50 simpll3 1095 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐺𝐵)
51 eqid 2610 . . . . . . . . . 10 (coe1𝐺) = (coe1𝐺)
5251, 11, 10, 35coe1f2 19400 . . . . . . . . 9 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
5350, 52syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
54 fznn0sub 12244 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → (𝑘𝑥) ∈ ℕ0)
5554adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (𝑘𝑥) ∈ ℕ0)
5653, 55ffvelrnd 6268 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅))
5735, 13ringcl 18384 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5842, 49, 56, 57syl3anc 1318 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
59 eqid 2610 . . . . . 6 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
6058, 59fmptd 6292 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))):(0...𝑘)⟶(Base‘𝑅))
6140elexi 3186 . . . . . . . . 9 (0...𝑘) ∈ V
6261mptex 6390 . . . . . . . 8 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V
63 funmpt 5840 . . . . . . . 8 Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
64 fvex 6113 . . . . . . . 8 (0g𝑅) ∈ V
6562, 63, 643pm3.2i 1232 . . . . . . 7 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V)
66 suppssdm 7195 . . . . . . . . 9 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
6759dmmptss 5548 . . . . . . . . 9 dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ⊆ (0...𝑘)
6866, 67sstri 3577 . . . . . . . 8 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘)
6940, 68pm3.2i 470 . . . . . . 7 ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))
70 suppssfifsupp 8173 . . . . . . 7 ((((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
7165, 69, 70mp2an 704 . . . . . 6 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅)
7271a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
73 eqid 2610 . . . . . . 7 {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} = {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}
7473coe1mul2lem2 19459 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}–1-1-onto→(0...𝑘))
7574adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}–1-1-onto→(0...𝑘))
7635, 36, 39, 41, 60, 72, 75gsumf1o 18140 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)))))
77 breq1 4586 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑑𝑟 ≤ (1𝑜 × {𝑘}) ↔ 𝑐𝑟 ≤ (1𝑜 × {𝑘})))
7877elrab 3331 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↔ (𝑐 ∈ (ℕ0𝑚 1𝑜) ∧ 𝑐𝑟 ≤ (1𝑜 × {𝑘})))
7978simprbi 479 . . . . . . . . 9 (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} → 𝑐𝑟 ≤ (1𝑜 × {𝑘}))
8079adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑐𝑟 ≤ (1𝑜 × {𝑘}))
81 simplr 788 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑘 ∈ ℕ0)
82 elrabi 3328 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} → 𝑐 ∈ (ℕ0𝑚 1𝑜))
8382adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑐 ∈ (ℕ0𝑚 1𝑜))
84 coe1mul2lem1 19458 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑐 ∈ (ℕ0𝑚 1𝑜)) → (𝑐𝑟 ≤ (1𝑜 × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8581, 83, 84syl2anc 691 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝑐𝑟 ≤ (1𝑜 × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8680, 85mpbid 221 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝑐‘∅) ∈ (0...𝑘))
87 eqidd 2611 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)))
88 eqidd 2611 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))
89 fveq2 6103 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐹)‘𝑥) = ((coe1𝐹)‘(𝑐‘∅)))
90 oveq2 6557 . . . . . . . . 9 (𝑥 = (𝑐‘∅) → (𝑘𝑥) = (𝑘 − (𝑐‘∅)))
9190fveq2d 6107 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐺)‘(𝑘𝑥)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
9289, 91oveq12d 6567 . . . . . . 7 (𝑥 = (𝑐‘∅) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
9386, 87, 88, 92fmptco 6303 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
94 simpll2 1094 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝐹𝐵)
9544fvcoe1 19398 . . . . . . . . 9 ((𝐹𝐵𝑐 ∈ (ℕ0𝑚 1𝑜)) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
9694, 83, 95syl2anc 691 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
97 df1o2 7459 . . . . . . . . . . . . . 14 1𝑜 = {∅}
98 0ex 4718 . . . . . . . . . . . . . 14 ∅ ∈ V
9997, 2, 98mapsnconst 7789 . . . . . . . . . . . . 13 (𝑐 ∈ (ℕ0𝑚 1𝑜) → 𝑐 = (1𝑜 × {(𝑐‘∅)}))
10083, 99syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑐 = (1𝑜 × {(𝑐‘∅)}))
101100oveq2d 6565 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((1𝑜 × {𝑘}) ∘𝑓𝑐) = ((1𝑜 × {𝑘}) ∘𝑓 − (1𝑜 × {(𝑐‘∅)})))
1023a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 1𝑜 ∈ On)
103 vex 3176 . . . . . . . . . . . . 13 𝑘 ∈ V
104103a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝑘 ∈ V)
105 fvex 6113 . . . . . . . . . . . . 13 (𝑐‘∅) ∈ V
106105a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝑐‘∅) ∈ V)
107102, 104, 106ofc12 6820 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((1𝑜 × {𝑘}) ∘𝑓 − (1𝑜 × {(𝑐‘∅)})) = (1𝑜 × {(𝑘 − (𝑐‘∅))}))
108101, 107eqtrd 2644 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((1𝑜 × {𝑘}) ∘𝑓𝑐) = (1𝑜 × {(𝑘 − (𝑐‘∅))}))
109108fveq2d 6107 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)) = (𝐺‘(1𝑜 × {(𝑘 − (𝑐‘∅))})))
110 simpll3 1095 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → 𝐺𝐵)
111 fznn0sub 12244 . . . . . . . . . . 11 ((𝑐‘∅) ∈ (0...𝑘) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11286, 111syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11351coe1fv 19397 . . . . . . . . . 10 ((𝐺𝐵 ∧ (𝑘 − (𝑐‘∅)) ∈ ℕ0) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1𝑜 × {(𝑘 − (𝑐‘∅))})))
114110, 112, 113syl2anc 691 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1𝑜 × {(𝑘 − (𝑐‘∅))})))
115109, 114eqtr4d 2647 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
11696, 115oveq12d 6567 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})}) → ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
117116mpteq2dva 4672 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
11893, 117eqtr4d 2647 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))))
119118oveq2d 6565 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ (𝑐‘∅)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))))))
12076, 119eqtrd 2644 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐))))))
121120mpteq2dva 4672 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0𝑚 1𝑜) ∣ 𝑑𝑟 ≤ (1𝑜 × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1𝑜 × {𝑘}) ∘𝑓𝑐)))))))
12227, 34, 1213eqtr4d 2654 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  dom cdm 5038   ∘ ccom 5042  Oncon0 5640  Fun wfun 5798  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793   ∘𝑟 cofr 6794   supp csupp 7182  1𝑜c1o 7440   ↑𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  0cc0 9815   ≤ cle 9954   − cmin 10145  ℕ0cn0 11169  ...cfz 12197  Basecbs 15695  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  CMndccmn 18016  Ringcrg 18370   mPwSer cmps 19172  PwSer1cps1 19366  coe1cco1 19369 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-psr 19177  df-opsr 19181  df-psr1 19371  df-coe1 19374 This theorem is referenced by:  coe1mul  19461
 Copyright terms: Public domain W3C validator