Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvss Structured version   Visualization version   GIF version

Theorem cnvss 5216
 Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝐵𝐴𝐵)
21ssbrd 4626 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
32ssopab2dv 4929 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
4 df-cnv 5046 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
5 df-cnv 5046 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
63, 4, 53sstr4g 3609 1 (𝐴𝐵𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ⊆ wss 3540   class class class wbr 4583  {copab 4642  ◡ccnv 5037 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-in 3547  df-ss 3554  df-br 4584  df-opab 4644  df-cnv 5046 This theorem is referenced by:  cnveq  5218  rnss  5275  relcnvtr  5572  funss  5822  funres11  5880  funcnvres  5881  foimacnv  6067  funcnvuni  7012  tposss  7240  vdwnnlem1  15537  structcnvcnv  15706  catcoppccl  16581  cnvps  17035  tsrdir  17061  ustneism  21837  metustsym  22170  metust  22173  pi1xfrcnv  22665  eulerpartlemmf  29764  cnvssb  36911  trclubgNEW  36944  clrellem  36948  clcnvlem  36949  cnvrcl0  36951  cnvtrcl0  36952  cnvtrrel  36981  relexpaddss  37029
 Copyright terms: Public domain W3C validator