Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvf1o | Structured version Visualization version GIF version |
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
Ref | Expression |
---|---|
cnvf1o | ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) | |
2 | snex 4835 | . . . . 5 ⊢ {𝑥} ∈ V | |
3 | 2 | cnvex 7006 | . . . 4 ⊢ ◡{𝑥} ∈ V |
4 | 3 | uniex 6851 | . . 3 ⊢ ∪ ◡{𝑥} ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑥 ∈ 𝐴) → ∪ ◡{𝑥} ∈ V) |
6 | snex 4835 | . . . . 5 ⊢ {𝑦} ∈ V | |
7 | 6 | cnvex 7006 | . . . 4 ⊢ ◡{𝑦} ∈ V |
8 | 7 | uniex 6851 | . . 3 ⊢ ∪ ◡{𝑦} ∈ V |
9 | 8 | a1i 11 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑦 ∈ ◡𝐴) → ∪ ◡{𝑦} ∈ V) |
10 | cnvf1olem 7162 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
11 | relcnv 5422 | . . . . 5 ⊢ Rel ◡𝐴 | |
12 | simpr 476 | . . . . 5 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
13 | cnvf1olem 7162 | . . . . 5 ⊢ ((Rel ◡𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) | |
14 | 11, 12, 13 | sylancr 694 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
15 | dfrel2 5502 | . . . . . . 7 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
16 | eleq2 2677 | . . . . . . 7 ⊢ (◡◡𝐴 = 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) | |
17 | 15, 16 | sylbi 206 | . . . . . 6 ⊢ (Rel 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) |
18 | 17 | anbi1d 737 | . . . . 5 ⊢ (Rel 𝐴 → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
19 | 18 | adantr 480 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
20 | 14, 19 | mpbid 221 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
21 | 10, 20 | impbida 873 | . 2 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦}))) |
22 | 1, 5, 9, 21 | f1od 6783 | 1 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {csn 4125 ∪ cuni 4372 ↦ cmpt 4643 ◡ccnv 5037 Rel wrel 5043 –1-1-onto→wf1o 5803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-1st 7059 df-2nd 7060 |
This theorem is referenced by: tposf12 7264 cnven 7918 xpcomf1o 7934 fsumcnv 14346 fprodcnv 14552 gsumcom2 18197 |
Copyright terms: Public domain | W3C validator |