MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubm Structured version   Visualization version   GIF version

Theorem cntzsubm 17591
Description: Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubm ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))

Proof of Theorem cntzsubm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzrec.b . . . 4 𝐵 = (Base‘𝑀)
2 cntzrec.z . . . 4 𝑍 = (Cntz‘𝑀)
31, 2cntzssv 17584 . . 3 (𝑍𝑆) ⊆ 𝐵
43a1i 11 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
5 eqid 2610 . . . . 5 (0g𝑀) = (0g𝑀)
61, 5mndidcl 17131 . . . 4 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
76adantr 480 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (0g𝑀) ∈ 𝐵)
8 simpll 786 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑀 ∈ Mnd)
9 simpr 476 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → 𝑆𝐵)
109sselda 3568 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝐵)
11 eqid 2610 . . . . . . 7 (+g𝑀) = (+g𝑀)
121, 11, 5mndlid 17134 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → ((0g𝑀)(+g𝑀)𝑥) = 𝑥)
138, 10, 12syl2anc 691 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → ((0g𝑀)(+g𝑀)𝑥) = 𝑥)
141, 11, 5mndrid 17135 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀)(0g𝑀)) = 𝑥)
158, 10, 14syl2anc 691 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑥(+g𝑀)(0g𝑀)) = 𝑥)
1613, 15eqtr4d 2647 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))
1716ralrimiva 2949 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ∀𝑥𝑆 ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))
181, 11, 2elcntz 17578 . . . 4 (𝑆𝐵 → ((0g𝑀) ∈ (𝑍𝑆) ↔ ((0g𝑀) ∈ 𝐵 ∧ ∀𝑥𝑆 ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))))
1918adantl 481 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ((0g𝑀) ∈ (𝑍𝑆) ↔ ((0g𝑀) ∈ 𝐵 ∧ ∀𝑥𝑆 ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))))
207, 17, 19mpbir2and 959 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (0g𝑀) ∈ (𝑍𝑆))
21 simpll 786 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑀 ∈ Mnd)
22 simprl 790 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑦 ∈ (𝑍𝑆))
233, 22sseldi 3566 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑦𝐵)
24 simprr 792 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑧 ∈ (𝑍𝑆))
253, 24sseldi 3566 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑧𝐵)
261, 11mndcl 17124 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
2721, 23, 25, 26syl3anc 1318 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
2821adantr 480 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑀 ∈ Mnd)
2923adantr 480 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑦𝐵)
3025adantr 480 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑧𝐵)
3110adantlr 747 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑥𝐵)
321, 11mndass 17125 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵𝑥𝐵)) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
3328, 29, 30, 31, 32syl13anc 1320 . . . . . 6 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
3411, 2cntzi 17585 . . . . . . . . 9 ((𝑧 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
3524, 34sylan 487 . . . . . . . 8 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
3635oveq2d 6565 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
371, 11mndass 17125 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
3828, 29, 31, 30, 37syl13anc 1320 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
3911, 2cntzi 17585 . . . . . . . . 9 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
4022, 39sylan 487 . . . . . . . 8 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
4140oveq1d 6564 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
4236, 38, 413eqtr2d 2650 . . . . . 6 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
431, 11mndass 17125 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4428, 31, 29, 30, 43syl13anc 1320 . . . . . 6 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4533, 42, 443eqtrd 2648 . . . . 5 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4645ralrimiva 2949 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
471, 11, 2elcntz 17578 . . . . 5 (𝑆𝐵 → ((𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆) ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4847ad2antlr 759 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → ((𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆) ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4927, 46, 48mpbir2and 959 . . 3 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → (𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))
5049ralrimivva 2954 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ∀𝑦 ∈ (𝑍𝑆)∀𝑧 ∈ (𝑍𝑆)(𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))
511, 5, 11issubm 17170 . . 3 (𝑀 ∈ Mnd → ((𝑍𝑆) ∈ (SubMnd‘𝑀) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (0g𝑀) ∈ (𝑍𝑆) ∧ ∀𝑦 ∈ (𝑍𝑆)∀𝑧 ∈ (𝑍𝑆)(𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))))
5251adantr 480 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubMnd‘𝑀) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (0g𝑀) ∈ (𝑍𝑆) ∧ ∀𝑦 ∈ (𝑍𝑆)∀𝑧 ∈ (𝑍𝑆)(𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))))
534, 20, 50, 52mpbir3and 1238 1 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117  SubMndcsubmnd 17157  Cntzccntz 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-cntz 17573
This theorem is referenced by:  cntzsubg  17592  cntzspan  18070  dprdfadd  18242  cntzsubr  18635
  Copyright terms: Public domain W3C validator