MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntz2ss Structured version   Visualization version   GIF version

Theorem cntz2ss 17588
Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntz2ss ((𝑆𝐵𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))

Proof of Theorem cntz2ss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . 6 (+g𝑀) = (+g𝑀)
2 cntzrec.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2cntzi 17585 . . . . 5 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
43ralrimiva 2949 . . . 4 (𝑥 ∈ (𝑍𝑆) → ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
5 ssralv 3629 . . . . 5 (𝑇𝑆 → (∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) → ∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
65adantl 481 . . . 4 ((𝑆𝐵𝑇𝑆) → (∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) → ∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
74, 6syl5 33 . . 3 ((𝑆𝐵𝑇𝑆) → (𝑥 ∈ (𝑍𝑆) → ∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
87ralrimiv 2948 . 2 ((𝑆𝐵𝑇𝑆) → ∀𝑥 ∈ (𝑍𝑆)∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
9 cntzrec.b . . . 4 𝐵 = (Base‘𝑀)
109, 2cntzssv 17584 . . 3 (𝑍𝑆) ⊆ 𝐵
11 sstr 3576 . . . 4 ((𝑇𝑆𝑆𝐵) → 𝑇𝐵)
1211ancoms 468 . . 3 ((𝑆𝐵𝑇𝑆) → 𝑇𝐵)
139, 1, 2sscntz 17582 . . 3 (((𝑍𝑆) ⊆ 𝐵𝑇𝐵) → ((𝑍𝑆) ⊆ (𝑍𝑇) ↔ ∀𝑥 ∈ (𝑍𝑆)∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
1410, 12, 13sylancr 694 . 2 ((𝑆𝐵𝑇𝑆) → ((𝑍𝑆) ⊆ (𝑍𝑇) ↔ ∀𝑥 ∈ (𝑍𝑆)∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
158, 14mpbird 246 1 ((𝑆𝐵𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Cntzccntz 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-cntz 17573
This theorem is referenced by:  cntzidss  17593  gsumzadd  18145  dprdfadd  18242  dprdss  18251  dprd2da  18264  dmdprdsplit2lem  18267  cntzsdrg  36791
  Copyright terms: Public domain W3C validator