MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt1 Structured version   Visualization version   GIF version

Theorem cnt1 20964
Description: The preimage of a T1 topology under an injective map is T1. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnt1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)

Proof of Theorem cnt1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop1 20854 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1077 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 eqid 2610 . . . . . . . . . 10 𝐽 = 𝐽
4 eqid 2610 . . . . . . . . . 10 𝐾 = 𝐾
53, 4cnf 20860 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
653ad2ant3 1077 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
7 ffn 5958 . . . . . . . 8 (𝐹: 𝐽 𝐾𝐹 Fn 𝐽)
86, 7syl 17 . . . . . . 7 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn 𝐽)
9 fnsnfv 6168 . . . . . . 7 ((𝐹 Fn 𝐽𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
108, 9sylan 487 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
1110imaeq2d 5385 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = (𝐹 “ (𝐹 “ {𝑥})))
12 simpl2 1058 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹:𝑋1-1𝑌)
13 fdm 5964 . . . . . . . . . . 11 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
146, 13syl 17 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝐽)
15 f1dm 6018 . . . . . . . . . . 11 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
16153ad2ant2 1076 . . . . . . . . . 10 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → dom 𝐹 = 𝑋)
1714, 16eqtr3d 2646 . . . . . . . . 9 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 = 𝑋)
1817eleq2d 2673 . . . . . . . 8 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 𝐽𝑥𝑋))
1918biimpa 500 . . . . . . 7 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝑥𝑋)
2019snssd 4281 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ⊆ 𝑋)
21 f1imacnv 6066 . . . . . 6 ((𝐹:𝑋1-1𝑌 ∧ {𝑥} ⊆ 𝑋) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2212, 20, 21syl2anc 691 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ (𝐹 “ {𝑥})) = {𝑥})
2311, 22eqtrd 2644 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) = {𝑥})
24 simpl3 1059 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐹 ∈ (𝐽 Cn 𝐾))
25 simpl1 1057 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → 𝐾 ∈ Fre)
266ffvelrnda 6267 . . . . . 6 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹𝑥) ∈ 𝐾)
274t1sncld 20940 . . . . . 6 ((𝐾 ∈ Fre ∧ (𝐹𝑥) ∈ 𝐾) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
2825, 26, 27syl2anc 691 . . . . 5 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {(𝐹𝑥)} ∈ (Clsd‘𝐾))
29 cnclima 20882 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ {(𝐹𝑥)} ∈ (Clsd‘𝐾)) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
3024, 28, 29syl2anc 691 . . . 4 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → (𝐹 “ {(𝐹𝑥)}) ∈ (Clsd‘𝐽))
3123, 30eqeltrrd 2689 . . 3 (((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 𝐽) → {𝑥} ∈ (Clsd‘𝐽))
3231ralrimiva 2949 . 2 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽))
333ist1 20935 . 2 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽)))
342, 32, 33sylanbrc 695 1 ((𝐾 ∈ Fre ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wss 3540  {csn 4125   cuni 4372  ccnv 5037  dom cdm 5038  cima 5041   Fn wfn 5799  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  Topctop 20517  Clsdccld 20630   Cn ccn 20838  Frect1 20921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-top 20521  df-topon 20523  df-cld 20633  df-cn 20841  df-t1 20928
This theorem is referenced by:  restt1  20981  sst1  20988  t1hmph  21404
  Copyright terms: Public domain W3C validator