Step | Hyp | Ref
| Expression |
1 | | eqid 2610 |
. . 3
⊢
((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})) =
((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})) |
2 | | eqid 2610 |
. . 3
⊢
(Base‘((Scalar‘(ℂfld ↾s
𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
= (Base‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)}))) |
3 | | eqid 2610 |
. . 3
⊢
(Base‘((𝐼
× {(ℂfld ↾s 𝐴)})‘𝑥)) = (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) |
4 | | eqid 2610 |
. . 3
⊢
((dist‘((𝐼
× {(ℂfld ↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) = ((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) |
5 | | eqid 2610 |
. . 3
⊢
(dist‘((Scalar‘(ℂfld ↾s
𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
= (dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)}))) |
6 | | fvex 6113 |
. . . 4
⊢
(Scalar‘(ℂfld ↾s 𝐴)) ∈ V |
7 | 6 | a1i 11 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) →
(Scalar‘(ℂfld ↾s 𝐴)) ∈ V) |
8 | | simpr 476 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐼 ∈ Fin) |
9 | | ovex 6577 |
. . . 4
⊢
(ℂfld ↾s 𝐴) ∈ V |
10 | | fnconstg 6006 |
. . . 4
⊢
((ℂfld ↾s 𝐴) ∈ V → (𝐼 × {(ℂfld
↾s 𝐴)}) Fn
𝐼) |
11 | 9, 10 | mp1i 13 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐼 × {(ℂfld
↾s 𝐴)}) Fn
𝐼) |
12 | | eqid 2610 |
. . 3
⊢
((dist‘((Scalar‘(ℂfld ↾s
𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) =
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) |
13 | | cnfldms 22389 |
. . . . . 6
⊢
ℂfld ∈ MetSp |
14 | | cnex 9896 |
. . . . . . . 8
⊢ ℂ
∈ V |
15 | 14 | ssex 4730 |
. . . . . . 7
⊢ (𝐴 ⊆ ℂ → 𝐴 ∈ V) |
16 | 15 | ad2antrr 758 |
. . . . . 6
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ V) |
17 | | ressms 22141 |
. . . . . 6
⊢
((ℂfld ∈ MetSp ∧ 𝐴 ∈ V) → (ℂfld
↾s 𝐴)
∈ MetSp) |
18 | 13, 16, 17 | sylancr 694 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (ℂfld
↾s 𝐴)
∈ MetSp) |
19 | | eqid 2610 |
. . . . . 6
⊢
(Base‘(ℂfld ↾s 𝐴)) = (Base‘(ℂfld
↾s 𝐴)) |
20 | | eqid 2610 |
. . . . . 6
⊢
((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) = ((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) |
21 | 19, 20 | msmet 22072 |
. . . . 5
⊢
((ℂfld ↾s 𝐴) ∈ MetSp →
((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈
(Met‘(Base‘(ℂfld ↾s 𝐴)))) |
22 | 18, 21 | syl 17 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈
(Met‘(Base‘(ℂfld ↾s 𝐴)))) |
23 | 9 | fvconst2 6374 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐼 → ((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥) = (ℂfld
↾s 𝐴)) |
24 | 23 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥) = (ℂfld
↾s 𝐴)) |
25 | 24 | fveq2d 6107 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) = (dist‘(ℂfld
↾s 𝐴))) |
26 | 24 | fveq2d 6107 |
. . . . . 6
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) = (Base‘(ℂfld
↾s 𝐴))) |
27 | 26 | sqxpeqd 5065 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥))) = ((Base‘(ℂfld
↾s 𝐴))
× (Base‘(ℂfld ↾s 𝐴)))) |
28 | 25, 27 | reseq12d 5318 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) = ((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴))))) |
29 | 26 | fveq2d 6107 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (Met‘(Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥))) =
(Met‘(Base‘(ℂfld ↾s 𝐴)))) |
30 | 22, 28, 29 | 3eltr4d 2703 |
. . 3
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ∈ (Met‘(Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) |
31 | | totbndbnd 32758 |
. . . . . 6
⊢
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) |
32 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(ℂfld ↾s 𝐴) = (ℂfld
↾s 𝐴) |
33 | | cnfldbas 19571 |
. . . . . . . . . . 11
⊢ ℂ =
(Base‘ℂfld) |
34 | 32, 33 | ressbas2 15758 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℂ → 𝐴 =
(Base‘(ℂfld ↾s 𝐴))) |
35 | 34 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → 𝐴 = (Base‘(ℂfld
↾s 𝐴))) |
36 | 35 | fveq2d 6107 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (Met‘𝐴) =
(Met‘(Base‘(ℂfld ↾s 𝐴)))) |
37 | 22, 36 | eleqtrrd 2691 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈ (Met‘𝐴)) |
38 | | eqid 2610 |
. . . . . . . . 9
⊢
(((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) |
39 | 38 | bnd2lem 32760 |
. . . . . . . 8
⊢
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈ (Met‘𝐴) ∧ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) → 𝑦 ⊆ 𝐴) |
40 | 39 | ex 449 |
. . . . . . 7
⊢
(((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ∈ (Met‘𝐴) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦 ⊆ 𝐴)) |
41 | 37, 40 | syl 17 |
. . . . . 6
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) → 𝑦 ⊆ 𝐴)) |
42 | 31, 41 | syl5 33 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) → 𝑦 ⊆ 𝐴)) |
43 | | eqid 2610 |
. . . . . . . . 9
⊢ ((abs
∘ − ) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦)) |
44 | 43 | cntotbnd 32765 |
. . . . . . . 8
⊢ (((abs
∘ − ) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾
(𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) |
45 | 44 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → (((abs ∘ − ) ↾
(𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − )
↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
46 | 35 | sseq2d 3596 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (𝑦 ⊆ 𝐴 ↔ 𝑦 ⊆ (Base‘(ℂfld
↾s 𝐴)))) |
47 | 46 | biimpa 500 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ (Base‘(ℂfld
↾s 𝐴))) |
48 | | xpss12 5148 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆
(Base‘(ℂfld ↾s 𝐴)) ∧ 𝑦 ⊆ (Base‘(ℂfld
↾s 𝐴)))
→ (𝑦 × 𝑦) ⊆
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) |
49 | 47, 47, 48 | syl2anc 691 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → (𝑦 × 𝑦) ⊆ ((Base‘(ℂfld
↾s 𝐴))
× (Base‘(ℂfld ↾s 𝐴)))) |
50 | 49 | resabs1d 5348 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
(((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) = ((dist‘(ℂfld
↾s 𝐴))
↾ (𝑦 × 𝑦))) |
51 | 16 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → 𝐴 ∈ V) |
52 | | cnfldds 19577 |
. . . . . . . . . . . 12
⊢ (abs
∘ − ) = (dist‘ℂfld) |
53 | 32, 52 | ressds 15896 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → (abs ∘
− ) = (dist‘(ℂfld ↾s 𝐴))) |
54 | 51, 53 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → (abs ∘ − ) =
(dist‘(ℂfld ↾s 𝐴))) |
55 | 54 | reseq1d 5316 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) → ((abs ∘ − ) ↾
(𝑦 × 𝑦)) =
((dist‘(ℂfld ↾s 𝐴)) ↾ (𝑦 × 𝑦))) |
56 | 50, 55 | eqtr4d 2647 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
(((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) = ((abs ∘ − ) ↾ (𝑦 × 𝑦))) |
57 | 56 | eleq1d 2672 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ ((abs ∘ − ) ↾
(𝑦 × 𝑦)) ∈ (TotBnd‘𝑦))) |
58 | 56 | eleq1d 2672 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ ((abs ∘ − ) ↾
(𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
59 | 45, 57, 58 | 3bitr4d 299 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ⊆ 𝐴) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
60 | 59 | ex 449 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (𝑦 ⊆ 𝐴 →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))) |
61 | 42, 41, 60 | pm5.21ndd 368 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) →
((((dist‘(ℂfld ↾s 𝐴)) ↾
((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
62 | 28 | reseq1d 5316 |
. . . . 5
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → (((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) = (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦))) |
63 | 62 | eleq1d 2672 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦))) |
64 | 62 | eleq1d 2672 |
. . . 4
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ (((dist‘(ℂfld
↾s 𝐴))
↾ ((Base‘(ℂfld ↾s 𝐴)) ×
(Base‘(ℂfld ↾s 𝐴)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
65 | 61, 63, 64 | 3bitr4d 299 |
. . 3
⊢ (((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) ∧ 𝑥 ∈ 𝐼) → ((((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (((dist‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) ↾ ((Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)) × (Base‘((𝐼 × {(ℂfld
↾s 𝐴)})‘𝑥)))) ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
66 | 1, 2, 3, 4, 5, 7, 8, 11, 12, 30, 65 | prdsbnd2 32764 |
. 2
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) →
(((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋) ↔
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋))) |
67 | | cnpwstotbnd.d |
. . . 4
⊢ 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋)) |
68 | | cnpwstotbnd.y |
. . . . . . . 8
⊢ 𝑌 = ((ℂfld
↾s 𝐴)
↑s 𝐼) |
69 | | eqid 2610 |
. . . . . . . 8
⊢
(Scalar‘(ℂfld ↾s 𝐴)) =
(Scalar‘(ℂfld ↾s 𝐴)) |
70 | 68, 69 | pwsval 15969 |
. . . . . . 7
⊢
(((ℂfld ↾s 𝐴) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘(ℂfld
↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)}))) |
71 | 9, 8, 70 | sylancr 694 |
. . . . . 6
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝑌 =
((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)}))) |
72 | 71 | fveq2d 6107 |
. . . . 5
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) →
(dist‘𝑌) =
(dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))) |
73 | 72 | reseq1d 5316 |
. . . 4
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) →
((dist‘𝑌) ↾
(𝑋 × 𝑋)) =
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋))) |
74 | 67, 73 | syl5eq 2656 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → 𝐷 =
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋))) |
75 | 74 | eleq1d 2672 |
. 2
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) ∈ (TotBnd‘𝑋))) |
76 | 74 | eleq1d 2672 |
. 2
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (Bnd‘𝑋) ↔
((dist‘((Scalar‘(ℂfld ↾s 𝐴))Xs(𝐼 × {(ℂfld
↾s 𝐴)})))
↾ (𝑋 × 𝑋)) ∈ (Bnd‘𝑋))) |
77 | 66, 75, 76 | 3bitr4d 299 |
1
⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))) |