Step | Hyp | Ref
| Expression |
1 | | cnpfval 20848 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))})) |
2 | 1 | fveq1d 6105 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐽 CnP 𝐾)‘𝑃) = ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))})‘𝑃)) |
3 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑣 = 𝑃 → (𝑓‘𝑣) = (𝑓‘𝑃)) |
4 | 3 | eleq1d 2672 |
. . . . . . 7
⊢ (𝑣 = 𝑃 → ((𝑓‘𝑣) ∈ 𝑦 ↔ (𝑓‘𝑃) ∈ 𝑦)) |
5 | | eleq1 2676 |
. . . . . . . . 9
⊢ (𝑣 = 𝑃 → (𝑣 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥)) |
6 | 5 | anbi1d 737 |
. . . . . . . 8
⊢ (𝑣 = 𝑃 → ((𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))) |
7 | 6 | rexbidv 3034 |
. . . . . . 7
⊢ (𝑣 = 𝑃 → (∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))) |
8 | 4, 7 | imbi12d 333 |
. . . . . 6
⊢ (𝑣 = 𝑃 → (((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦)) ↔ ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦)))) |
9 | 8 | ralbidv 2969 |
. . . . 5
⊢ (𝑣 = 𝑃 → (∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦)))) |
10 | 9 | rabbidv 3164 |
. . . 4
⊢ (𝑣 = 𝑃 → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))} = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
11 | | eqid 2610 |
. . . 4
⊢ (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) = (𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
12 | | ovex 6577 |
. . . . 5
⊢ (𝑌 ↑𝑚
𝑋) ∈
V |
13 | 12 | rabex 4740 |
. . . 4
⊢ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))} ∈ V |
14 | 10, 11, 13 | fvmpt 6191 |
. . 3
⊢ (𝑃 ∈ 𝑋 → ((𝑣 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑣) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑣 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))})‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
15 | 2, 14 | sylan9eq 2664 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
16 | 15 | 3impa 1251 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |