Step | Hyp | Ref
| Expression |
1 | | cnprest.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
2 | | eqid 2610 |
. . . . 5
⊢ ∪ 𝐾 =
∪ 𝐾 |
3 | 1, 2 | cnpf 20861 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐹:𝑋⟶∪ 𝐾) |
4 | 3 | 3ad2ant3 1077 |
. . 3
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶∪ 𝐾) |
5 | | simp1 1054 |
. . 3
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 ⊆ 𝑋) |
6 | 4, 5 | fssresd 5984 |
. 2
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾) |
7 | | simpl2 1058 |
. . . . . 6
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → 𝑃 ∈ 𝐴) |
8 | | fvres 6117 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑃) = (𝐹‘𝑃)) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → ((𝐹 ↾ 𝐴)‘𝑃) = (𝐹‘𝑃)) |
10 | 9 | eleq1d 2672 |
. . . 4
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 ↔ (𝐹‘𝑃) ∈ 𝑦)) |
11 | | cnpimaex 20870 |
. . . . . . 7
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) |
12 | 11 | 3expia 1259 |
. . . . . 6
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) |
13 | 12 | 3ad2antl3 1218 |
. . . . 5
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) |
14 | | idd 24 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃 ∈ 𝑥 → 𝑃 ∈ 𝑥)) |
15 | | simp2 1055 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝐴) |
16 | 14, 15 | jctird 565 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃 ∈ 𝑥 → (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴))) |
17 | | elin 3758 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (𝑥 ∩ 𝐴) ↔ (𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴)) |
18 | 16, 17 | syl6ibr 241 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑃 ∈ 𝑥 → 𝑃 ∈ (𝑥 ∩ 𝐴))) |
19 | | inss1 3795 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
20 | | imass2 5420 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝑥 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥)) |
21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ (𝐹 “ 𝑥) |
22 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ 𝑥) ⊆ 𝑦) |
23 | 21, 22 | syl5ss 3579 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦) |
24 | 23 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝐹 “ 𝑥) ⊆ 𝑦 → (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
25 | 18, 24 | anim12d 584 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
26 | 25 | reximdv 2999 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
27 | | vex 3176 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
28 | 27 | inex1 4727 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝐴) ∈ V |
29 | 28 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ V) |
30 | | cnptop1 20856 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top) |
31 | 30 | 3ad2ant3 1077 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top) |
32 | | uniexg 6853 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ V) |
33 | 31, 32 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∪ 𝐽 ∈ V) |
34 | 5, 1 | syl6sseq 3614 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 ⊆ ∪ 𝐽) |
35 | 33, 34 | ssexd 4733 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐴 ∈ V) |
36 | | elrest 15911 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
37 | 31, 35, 36 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑧 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐽 𝑧 = (𝑥 ∩ 𝐴))) |
38 | | simpr 476 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → 𝑧 = (𝑥 ∩ 𝐴)) |
39 | 38 | eleq2d 2673 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (𝑃 ∈ 𝑧 ↔ 𝑃 ∈ (𝑥 ∩ 𝐴))) |
40 | 38 | imaeq2d 5385 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴))) |
41 | | inss2 3796 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 |
42 | | resima2 5352 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝐴) ⊆ 𝐴 → ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴))) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ 𝐴) “ (𝑥 ∩ 𝐴)) = (𝐹 “ (𝑥 ∩ 𝐴)) |
44 | 40, 43 | syl6eq 2660 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝐹 ↾ 𝐴) “ 𝑧) = (𝐹 “ (𝑥 ∩ 𝐴))) |
45 | 44 | sseq1d 3595 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → (((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦 ↔ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦)) |
46 | 39, 45 | anbi12d 743 |
. . . . . . . 8
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑧 = (𝑥 ∩ 𝐴)) → ((𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
47 | 29, 37, 46 | rexxfr2d 4809 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ (𝑥 ∩ 𝐴) ∧ (𝐹 “ (𝑥 ∩ 𝐴)) ⊆ 𝑦))) |
48 | 26, 47 | sylibrd 248 |
. . . . . 6
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
49 | 48 | adantr 480 |
. . . . 5
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
50 | 13, 49 | syld 46 |
. . . 4
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
51 | 10, 50 | sylbid 229 |
. . 3
⊢ (((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ 𝑦 ∈ 𝐾) → (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
52 | 51 | ralrimiva 2949 |
. 2
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))) |
53 | 1 | toptopon 20548 |
. . . . 5
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
54 | 31, 53 | sylib 207 |
. . . 4
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ (TopOn‘𝑋)) |
55 | | resttopon 20775 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
56 | 54, 5, 55 | syl2anc 691 |
. . 3
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
57 | | cnptop2 20857 |
. . . . 5
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top) |
58 | 57 | 3ad2ant3 1077 |
. . . 4
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top) |
59 | 2 | toptopon 20548 |
. . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
60 | 58, 59 | sylib 207 |
. . 3
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
61 | | iscnp 20851 |
. . 3
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)
∧ 𝑃 ∈ 𝐴) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
62 | 56, 60, 15, 61 | syl3anc 1318 |
. 2
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃) ↔ ((𝐹 ↾ 𝐴):𝐴⟶∪ 𝐾 ∧ ∀𝑦 ∈ 𝐾 (((𝐹 ↾ 𝐴)‘𝑃) ∈ 𝑦 → ∃𝑧 ∈ (𝐽 ↾t 𝐴)(𝑃 ∈ 𝑧 ∧ ((𝐹 ↾ 𝐴) “ 𝑧) ⊆ 𝑦))))) |
63 | 6, 52, 62 | mpbir2and 959 |
1
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃)) |