Step | Hyp | Ref
| Expression |
1 | | cnmptk1p.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | cnmptk1p.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
3 | | cnmptk1p.b |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
4 | | cnf2 20863 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑌) |
5 | 1, 2, 3, 4 | syl3anc 1318 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑌) |
6 | | eqid 2610 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) |
7 | 6 | fmpt 6289 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ 𝑌 ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑌) |
8 | 5, 7 | sylibr 223 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑌) |
9 | 8 | r19.21bi 2916 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑌) |
10 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
11 | | cnmptk1p.l |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘𝑍)) |
13 | | cnmptk1p.n |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Comp) |
14 | | nllytop 21086 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝑛-Locally Comp
→ 𝐾 ∈
Top) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ Top) |
16 | | topontop 20541 |
. . . . . . . . . . . 12
⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) |
17 | 11, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ Top) |
18 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ (𝐿 ^ko 𝐾) = (𝐿 ^ko 𝐾) |
19 | 18 | xkotopon 21213 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
20 | 15, 17, 19 | syl2anc 691 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
21 | | cnmptk1p.a |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) |
22 | | cnf2 20863 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
23 | 1, 20, 21, 22 | syl3anc 1318 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
24 | | eqid 2610 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) |
25 | 24 | fmpt 6289 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑋 (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿) ↔ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
26 | 23, 25 | sylibr 223 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
27 | 26 | r19.21bi 2916 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
28 | | cnf2 20863 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
29 | 10, 12, 27, 28 | syl3anc 1318 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
30 | | eqid 2610 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) |
31 | 30 | fmpt 6289 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑌 𝐴 ∈ 𝑍 ↔ (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
32 | 29, 31 | sylibr 223 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍) |
33 | | cnmptk1p.c |
. . . . . . 7
⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) |
34 | 33 | eleq1d 2672 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐴 ∈ 𝑍 ↔ 𝐶 ∈ 𝑍)) |
35 | 34 | rspcv 3278 |
. . . . 5
⊢ (𝐵 ∈ 𝑌 → (∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 → 𝐶 ∈ 𝑍)) |
36 | 9, 32, 35 | sylc 63 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ 𝑍) |
37 | 33, 30 | fvmptg 6189 |
. . . 4
⊢ ((𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵) = 𝐶) |
38 | 9, 36, 37 | syl2anc 691 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵) = 𝐶) |
39 | 38 | mpteq2dva 4672 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
40 | | eqid 2610 |
. . . . 5
⊢ (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) |
41 | | toponuni 20542 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
42 | 2, 41 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
43 | | mpt2eq12 6613 |
. . . . 5
⊢ (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = ∪ 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧))) |
44 | 40, 42, 43 | sylancr 694 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧))) |
45 | | eqid 2610 |
. . . . . 6
⊢ ∪ 𝐾 =
∪ 𝐾 |
46 | | eqid 2610 |
. . . . . 6
⊢ (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) |
47 | 45, 46 | xkofvcn 21297 |
. . . . 5
⊢ ((𝐾 ∈ 𝑛-Locally Comp
∧ 𝐿 ∈ Top) →
(𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ^ko 𝐾) ×t 𝐾) Cn 𝐿)) |
48 | 13, 17, 47 | syl2anc 691 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ^ko 𝐾) ×t 𝐾) Cn 𝐿)) |
49 | 44, 48 | eqeltrd 2688 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ^ko 𝐾) ×t 𝐾) Cn 𝐿)) |
50 | | fveq1 6102 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ 𝑌 ↦ 𝐴) → (𝑓‘𝑧) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑧)) |
51 | | fveq2 6103 |
. . . 4
⊢ (𝑧 = 𝐵 → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑧) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) |
52 | 50, 51 | sylan9eq 2664 |
. . 3
⊢ ((𝑓 = (𝑦 ∈ 𝑌 ↦ 𝐴) ∧ 𝑧 = 𝐵) → (𝑓‘𝑧) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) |
53 | 1, 21, 3, 20, 2, 49, 52 | cnmpt12 21280 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿)) |
54 | 39, 53 | eqeltrrd 2689 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) |