Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2plusg Structured version   Visualization version   GIF version

Theorem cnmpt2plusg 21702
 Description: Continuity of the group sum; analogue of cnmpt22f 21288 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
cnmpt1plusg.p + = (+g𝐺)
cnmpt1plusg.g (𝜑𝐺 ∈ TopMnd)
cnmpt1plusg.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt2plusg.l (𝜑𝐿 ∈ (TopOn‘𝑌))
cnmpt2plusg.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
cnmpt2plusg.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Assertion
Ref Expression
cnmpt2plusg (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐽,𝑦   𝑥,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   𝐾(𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cnmpt2plusg
StepHypRef Expression
1 cnmpt1plusg.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt2plusg.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑌))
3 txtopon 21204 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1plusg.g . . . . . . . . . 10 (𝜑𝐺 ∈ TopMnd)
6 tgpcn.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝐺)
7 eqid 2610 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
86, 7tmdtopon 21695 . . . . . . . . . 10 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
95, 8syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝐺)))
10 cnmpt2plusg.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
11 cnf2 20863 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
124, 9, 10, 11syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
13 eqid 2610 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1413fmpt2 7126 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐺) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
1512, 14sylibr 223 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐺))
1615r19.21bi 2916 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝐺))
1716r19.21bi 2916 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝐺))
18173impa 1251 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → 𝐴 ∈ (Base‘𝐺))
19 cnmpt2plusg.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
20 cnf2 20863 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
214, 9, 19, 20syl3anc 1318 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
22 eqid 2610 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
2322fmpt2 7126 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝐺) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
2421, 23sylibr 223 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝐺))
2524r19.21bi 2916 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝐺))
2625r19.21bi 2916 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝐺))
27263impa 1251 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → 𝐵 ∈ (Base‘𝐺))
28 cnmpt1plusg.p . . . . 5 + = (+g𝐺)
29 eqid 2610 . . . . 5 (+𝑓𝐺) = (+𝑓𝐺)
307, 28, 29plusfval 17071 . . . 4 ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
3118, 27, 30syl2anc 691 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
3231mpt2eq3dva 6617 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(+𝑓𝐺)𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 + 𝐵)))
336, 29tmdcn 21697 . . . 4 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
345, 33syl 17 . . 3 (𝜑 → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
351, 2, 10, 19, 34cnmpt22f 21288 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(+𝑓𝐺)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
3632, 35eqeltrrd 2689 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   × cxp 5036  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Basecbs 15695  +gcplusg 15768  TopOpenctopn 15905  +𝑓cplusf 17062  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173  TopMndctmd 21684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-topgen 15927  df-plusf 17064  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-tx 21175  df-tmd 21686 This theorem is referenced by:  tgpsubcn  21704  oppgtmd  21711  prdstmdd  21737  cnmpt2mulr  21796
 Copyright terms: Public domain W3C validator