MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2pc Structured version   Visualization version   GIF version

Theorem cnmpt2pc 22535
Description: Piecewise definition of a continuous function on a real interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
cnmpt2pc.r 𝑅 = (topGen‘ran (,))
cnmpt2pc.m 𝑀 = (𝑅t (𝐴[,]𝐵))
cnmpt2pc.n 𝑁 = (𝑅t (𝐵[,]𝐶))
cnmpt2pc.o 𝑂 = (𝑅t (𝐴[,]𝐶))
cnmpt2pc.a (𝜑𝐴 ∈ ℝ)
cnmpt2pc.c (𝜑𝐶 ∈ ℝ)
cnmpt2pc.b (𝜑𝐵 ∈ (𝐴[,]𝐶))
cnmpt2pc.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt2pc.q ((𝜑 ∧ (𝑥 = 𝐵𝑦𝑋)) → 𝐷 = 𝐸)
cnmpt2pc.d (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
cnmpt2pc.e (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
Assertion
Ref Expression
cnmpt2pc (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑂 ×t 𝐽) Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem cnmpt2pc
StepHypRef Expression
1 eqid 2610 . 2 (𝑂 ×t 𝐽) = (𝑂 ×t 𝐽)
2 eqid 2610 . 2 𝐾 = 𝐾
3 cnmpt2pc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 cnmpt2pc.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
5 iccssre 12126 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴[,]𝐶) ⊆ ℝ)
63, 4, 5syl2anc 691 . . . . 5 (𝜑 → (𝐴[,]𝐶) ⊆ ℝ)
7 cnmpt2pc.b . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐶))
86, 7sseldd 3569 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 icccld 22380 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
103, 8, 9syl2anc 691 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
11 cnmpt2pc.r . . . . . . 7 𝑅 = (topGen‘ran (,))
1211fveq2i 6106 . . . . . 6 (Clsd‘𝑅) = (Clsd‘(topGen‘ran (,)))
1310, 12syl6eleqr 2699 . . . . 5 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑅))
14 ssun1 3738 . . . . . 6 (𝐴[,]𝐵) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))
15 iccsplit 12176 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ (𝐴[,]𝐶)) → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
163, 4, 7, 15syl3anc 1318 . . . . . 6 (𝜑 → (𝐴[,]𝐶) = ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)))
1714, 16syl5sseqr 3617 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶))
18 uniretop 22376 . . . . . . 7 ℝ = (topGen‘ran (,))
1911unieqi 4381 . . . . . . 7 𝑅 = (topGen‘ran (,))
2018, 19eqtr4i 2635 . . . . . 6 ℝ = 𝑅
2120restcldi 20787 . . . . 5 (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐴[,]𝐵) ∈ (Clsd‘𝑅) ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶)) → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
226, 13, 17, 21syl3anc 1318 . . . 4 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
23 cnmpt2pc.o . . . . 5 𝑂 = (𝑅t (𝐴[,]𝐶))
2423fveq2i 6106 . . . 4 (Clsd‘𝑂) = (Clsd‘(𝑅t (𝐴[,]𝐶)))
2522, 24syl6eleqr 2699 . . 3 (𝜑 → (𝐴[,]𝐵) ∈ (Clsd‘𝑂))
26 cnmpt2pc.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
27 toponuni 20542 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2826, 27syl 17 . . . 4 (𝜑𝑋 = 𝐽)
29 topontop 20541 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
30 eqid 2610 . . . . . 6 𝐽 = 𝐽
3130topcld 20649 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ (Clsd‘𝐽))
3226, 29, 313syl 18 . . . 4 (𝜑 𝐽 ∈ (Clsd‘𝐽))
3328, 32eqeltrd 2688 . . 3 (𝜑𝑋 ∈ (Clsd‘𝐽))
34 txcld 21216 . . 3 (((𝐴[,]𝐵) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
3525, 33, 34syl2anc 691 . 2 (𝜑 → ((𝐴[,]𝐵) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
36 icccld 22380 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran (,))))
378, 4, 36syl2anc 691 . . . . . 6 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(topGen‘ran (,))))
3837, 12syl6eleqr 2699 . . . . 5 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑅))
39 ssun2 3739 . . . . . 6 (𝐵[,]𝐶) ⊆ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))
4039, 16syl5sseqr 3617 . . . . 5 (𝜑 → (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶))
4120restcldi 20787 . . . . 5 (((𝐴[,]𝐶) ⊆ ℝ ∧ (𝐵[,]𝐶) ∈ (Clsd‘𝑅) ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶)) → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
426, 38, 40, 41syl3anc 1318 . . . 4 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘(𝑅t (𝐴[,]𝐶))))
4342, 24syl6eleqr 2699 . . 3 (𝜑 → (𝐵[,]𝐶) ∈ (Clsd‘𝑂))
44 txcld 21216 . . 3 (((𝐵[,]𝐶) ∈ (Clsd‘𝑂) ∧ 𝑋 ∈ (Clsd‘𝐽)) → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
4543, 33, 44syl2anc 691 . 2 (𝜑 → ((𝐵[,]𝐶) × 𝑋) ∈ (Clsd‘(𝑂 ×t 𝐽)))
4616xpeq1d 5062 . . . 4 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋))
47 xpundir 5095 . . . 4 (((𝐴[,]𝐵) ∪ (𝐵[,]𝐶)) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋))
4846, 47syl6eq 2660 . . 3 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)))
49 retopon 22377 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
5011, 49eqeltri 2684 . . . . . . 7 𝑅 ∈ (TopOn‘ℝ)
51 resttopon 20775 . . . . . . 7 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐶) ⊆ ℝ) → (𝑅t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶)))
5250, 6, 51sylancr 694 . . . . . 6 (𝜑 → (𝑅t (𝐴[,]𝐶)) ∈ (TopOn‘(𝐴[,]𝐶)))
5323, 52syl5eqel 2692 . . . . 5 (𝜑𝑂 ∈ (TopOn‘(𝐴[,]𝐶)))
54 txtopon 21204 . . . . 5 ((𝑂 ∈ (TopOn‘(𝐴[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)))
5553, 26, 54syl2anc 691 . . . 4 (𝜑 → (𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)))
56 toponuni 20542 . . . 4 ((𝑂 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐶) × 𝑋)) → ((𝐴[,]𝐶) × 𝑋) = (𝑂 ×t 𝐽))
5755, 56syl 17 . . 3 (𝜑 → ((𝐴[,]𝐶) × 𝑋) = (𝑂 ×t 𝐽))
5848, 57eqtr3d 2646 . 2 (𝜑 → (((𝐴[,]𝐵) × 𝑋) ∪ ((𝐵[,]𝐶) × 𝑋)) = (𝑂 ×t 𝐽))
59 cnmpt2pc.m . . . . . . . . . 10 𝑀 = (𝑅t (𝐴[,]𝐵))
6017, 6sstrd 3578 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
61 resttopon 20775 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝑅t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
6250, 60, 61sylancr 694 . . . . . . . . . 10 (𝜑 → (𝑅t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
6359, 62syl5eqel 2692 . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘(𝐴[,]𝐵)))
64 txtopon 21204 . . . . . . . . 9 ((𝑀 ∈ (TopOn‘(𝐴[,]𝐵)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)))
6563, 26, 64syl2anc 691 . . . . . . . 8 (𝜑 → (𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)))
66 cnmpt2pc.d . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
67 cntop2 20855 . . . . . . . . . 10 ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷) ∈ ((𝑀 ×t 𝐽) Cn 𝐾) → 𝐾 ∈ Top)
6866, 67syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
692toptopon 20548 . . . . . . . . 9 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
7068, 69sylib 207 . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
71 elicc2 12109 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
723, 8, 71syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
7372biimpa 500 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
7473simp3d 1068 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
75743adant3 1074 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑋) → 𝑥𝐵)
7675iftrued 4044 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑋) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐷)
7776mpt2eq3dva 6617 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋𝐷))
7877, 66eqeltrd 2688 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾))
79 cnf2 20863 . . . . . . . 8 (((𝑀 ×t 𝐽) ∈ (TopOn‘((𝐴[,]𝐵) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑀 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
8065, 70, 78, 79syl3anc 1318 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
81 eqid 2610 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
8281fmpt2 7126 . . . . . . 7 (∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐵) × 𝑋)⟶ 𝐾)
8380, 82sylibr 223 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
84 cnmpt2pc.n . . . . . . . . . 10 𝑁 = (𝑅t (𝐵[,]𝐶))
8540, 6sstrd 3578 . . . . . . . . . . 11 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
86 resttopon 20775 . . . . . . . . . . 11 ((𝑅 ∈ (TopOn‘ℝ) ∧ (𝐵[,]𝐶) ⊆ ℝ) → (𝑅t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶)))
8750, 85, 86sylancr 694 . . . . . . . . . 10 (𝜑 → (𝑅t (𝐵[,]𝐶)) ∈ (TopOn‘(𝐵[,]𝐶)))
8884, 87syl5eqel 2692 . . . . . . . . 9 (𝜑𝑁 ∈ (TopOn‘(𝐵[,]𝐶)))
89 txtopon 21204 . . . . . . . . 9 ((𝑁 ∈ (TopOn‘(𝐵[,]𝐶)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)))
9088, 26, 89syl2anc 691 . . . . . . . 8 (𝜑 → (𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)))
91 elicc2 12109 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
928, 4, 91syl2anc 691 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
9392biimpa 500 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶))
9493simp2d 1067 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
9594biantrud 527 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥𝐵 ↔ (𝑥𝐵𝐵𝑥)))
9693simp1d 1066 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 ∈ ℝ)
978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → 𝐵 ∈ ℝ)
9896, 97letri3d 10058 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
9995, 98bitr4d 270 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐵[,]𝐶)) → (𝑥𝐵𝑥 = 𝐵))
100993adant3 1074 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥𝐵𝑥 = 𝐵))
101 cnmpt2pc.q . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 = 𝐵𝑦𝑋)) → 𝐷 = 𝐸)
102101ancom2s 840 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → 𝐷 = 𝐸)
103102ifeq1d 4054 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → if(𝑥𝐵, 𝐷, 𝐸) = if(𝑥𝐵, 𝐸, 𝐸))
104 ifid 4075 . . . . . . . . . . . . . . 15 if(𝑥𝐵, 𝐸, 𝐸) = 𝐸
105103, 104syl6eq 2660 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑋𝑥 = 𝐵)) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
106105expr 641 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋) → (𝑥 = 𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
1071063adant2 1073 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥 = 𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
108100, 107sylbid 229 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → (𝑥𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸))
109 iffalse 4045 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
110108, 109pm2.61d1 170 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐵[,]𝐶) ∧ 𝑦𝑋) → if(𝑥𝐵, 𝐷, 𝐸) = 𝐸)
111110mpt2eq3dva 6617 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸))
112 cnmpt2pc.e . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋𝐸) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
113111, 112eqeltrd 2688 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾))
114 cnf2 20863 . . . . . . . 8 (((𝑁 ×t 𝐽) ∈ (TopOn‘((𝐵[,]𝐶) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑁 ×t 𝐽) Cn 𝐾)) → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
11590, 70, 113, 114syl3anc 1318 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
116 eqid 2610 . . . . . . . 8 (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
117116fmpt2 7126 . . . . . . 7 (∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐵[,]𝐶) × 𝑋)⟶ 𝐾)
118115, 117sylibr 223 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
119 ralun 3757 . . . . . 6 ((∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ∧ ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾) → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
12083, 118, 119syl2anc 691 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
12116raleqdv 3121 . . . . 5 (𝜑 → (∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ ∀𝑥 ∈ ((𝐴[,]𝐵) ∪ (𝐵[,]𝐶))∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾))
122120, 121mpbird 246 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾)
123 eqid 2610 . . . . 5 (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) = (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸))
124123fmpt2 7126 . . . 4 (∀𝑥 ∈ (𝐴[,]𝐶)∀𝑦𝑋 if(𝑥𝐵, 𝐷, 𝐸) ∈ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾)
125122, 124sylib 207 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾)
12657feq2d 5944 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)):((𝐴[,]𝐶) × 𝑋)⟶ 𝐾 ↔ (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)): (𝑂 ×t 𝐽)⟶ 𝐾))
127125, 126mpbid 221 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)): (𝑂 ×t 𝐽)⟶ 𝐾)
128 ssid 3587 . . . 4 𝑋𝑋
129 resmpt2 6656 . . . 4 (((𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ 𝑋𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
13017, 128, 129sylancl 693 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
131 retop 22375 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
13211, 131eqeltri 2684 . . . . . . . . 9 𝑅 ∈ Top
133 ovex 6577 . . . . . . . . 9 (𝐴[,]𝐶) ∈ V
134 resttop 20774 . . . . . . . . 9 ((𝑅 ∈ Top ∧ (𝐴[,]𝐶) ∈ V) → (𝑅t (𝐴[,]𝐶)) ∈ Top)
135132, 133, 134mp2an 704 . . . . . . . 8 (𝑅t (𝐴[,]𝐶)) ∈ Top
13623, 135eqeltri 2684 . . . . . . 7 𝑂 ∈ Top
137136a1i 11 . . . . . 6 (𝜑𝑂 ∈ Top)
138 ovex 6577 . . . . . . 7 (𝐴[,]𝐵) ∈ V
139138a1i 11 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ∈ V)
140 txrest 21244 . . . . . 6 (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐴[,]𝐵) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)))
141137, 26, 139, 33, 140syl22anc 1319 . . . . 5 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)))
142132a1i 11 . . . . . . . 8 (𝜑𝑅 ∈ Top)
143133a1i 11 . . . . . . . 8 (𝜑 → (𝐴[,]𝐶) ∈ V)
144 restabs 20779 . . . . . . . 8 ((𝑅 ∈ Top ∧ (𝐴[,]𝐵) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅t (𝐴[,]𝐵)))
145142, 17, 143, 144syl3anc 1318 . . . . . . 7 (𝜑 → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵)) = (𝑅t (𝐴[,]𝐵)))
14623oveq1i 6559 . . . . . . 7 (𝑂t (𝐴[,]𝐵)) = ((𝑅t (𝐴[,]𝐶)) ↾t (𝐴[,]𝐵))
147145, 146, 593eqtr4g 2669 . . . . . 6 (𝜑 → (𝑂t (𝐴[,]𝐵)) = 𝑀)
14828oveq2d 6565 . . . . . . 7 (𝜑 → (𝐽t 𝑋) = (𝐽t 𝐽))
14930restid 15917 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝐽t 𝐽) = 𝐽)
15026, 149syl 17 . . . . . . 7 (𝜑 → (𝐽t 𝐽) = 𝐽)
151148, 150eqtrd 2644 . . . . . 6 (𝜑 → (𝐽t 𝑋) = 𝐽)
152147, 151oveq12d 6567 . . . . 5 (𝜑 → ((𝑂t (𝐴[,]𝐵)) ×t (𝐽t 𝑋)) = (𝑀 ×t 𝐽))
153141, 152eqtrd 2644 . . . 4 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) = (𝑀 ×t 𝐽))
154153oveq1d 6564 . . 3 (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾) = ((𝑀 ×t 𝐽) Cn 𝐾))
15578, 130, 1543eltr4d 2703 . 2 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐴[,]𝐵) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐴[,]𝐵) × 𝑋)) Cn 𝐾))
156 resmpt2 6656 . . . 4 (((𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ 𝑋𝑋) → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
15740, 128, 156sylancl 693 . . 3 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) = (𝑥 ∈ (𝐵[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)))
158 ovex 6577 . . . . . . 7 (𝐵[,]𝐶) ∈ V
159158a1i 11 . . . . . 6 (𝜑 → (𝐵[,]𝐶) ∈ V)
160 txrest 21244 . . . . . 6 (((𝑂 ∈ Top ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ ((𝐵[,]𝐶) ∈ V ∧ 𝑋 ∈ (Clsd‘𝐽))) → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)))
161137, 26, 159, 33, 160syl22anc 1319 . . . . 5 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)))
162 restabs 20779 . . . . . . . 8 ((𝑅 ∈ Top ∧ (𝐵[,]𝐶) ⊆ (𝐴[,]𝐶) ∧ (𝐴[,]𝐶) ∈ V) → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅t (𝐵[,]𝐶)))
163142, 40, 143, 162syl3anc 1318 . . . . . . 7 (𝜑 → ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶)) = (𝑅t (𝐵[,]𝐶)))
16423oveq1i 6559 . . . . . . 7 (𝑂t (𝐵[,]𝐶)) = ((𝑅t (𝐴[,]𝐶)) ↾t (𝐵[,]𝐶))
165163, 164, 843eqtr4g 2669 . . . . . 6 (𝜑 → (𝑂t (𝐵[,]𝐶)) = 𝑁)
166165, 151oveq12d 6567 . . . . 5 (𝜑 → ((𝑂t (𝐵[,]𝐶)) ×t (𝐽t 𝑋)) = (𝑁 ×t 𝐽))
167161, 166eqtrd 2644 . . . 4 (𝜑 → ((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) = (𝑁 ×t 𝐽))
168167oveq1d 6564 . . 3 (𝜑 → (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾) = ((𝑁 ×t 𝐽) Cn 𝐾))
169113, 157, 1683eltr4d 2703 . 2 (𝜑 → ((𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ↾ ((𝐵[,]𝐶) × 𝑋)) ∈ (((𝑂 ×t 𝐽) ↾t ((𝐵[,]𝐶) × 𝑋)) Cn 𝐾))
1701, 2, 35, 45, 58, 127, 155, 169paste 20908 1 (𝜑 → (𝑥 ∈ (𝐴[,]𝐶), 𝑦𝑋 ↦ if(𝑥𝐵, 𝐷, 𝐸)) ∈ ((𝑂 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538  wss 3540  ifcif 4036   cuni 4372   class class class wbr 4583   × cxp 5036  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  cr 9814  cle 9954  (,)cioo 12046  [,]cicc 12049  t crest 15904  topGenctg 15921  Topctop 20517  TopOnctopon 20518  Clsdccld 20630   Cn ccn 20838   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050  df-icc 12053  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-cn 20841  df-tx 21175
This theorem is referenced by:  htpycc  22587  pcocn  22625  pcohtpylem  22627  pcopt  22630  pcopt2  22631  pcoass  22632  pcorevlem  22634
  Copyright terms: Public domain W3C validator