Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt2c | Structured version Visualization version GIF version |
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
cnmpt2c.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
cnmpt2c.p | ⊢ (𝜑 → 𝑃 ∈ 𝑍) |
Ref | Expression |
---|---|
cnmpt2c | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2611 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑃 = 𝑃) | |
2 | 1 | mpt2mpt 6650 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) |
3 | cnmpt21.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
4 | cnmpt21.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
5 | txtopon 21204 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | |
6 | 3, 4, 5 | syl2anc 691 | . . 3 ⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
7 | cnmpt2c.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
8 | cnmpt2c.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑍) | |
9 | 6, 7, 8 | cnmptc 21275 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
10 | 2, 9 | syl5eqelr 2693 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 〈cop 4131 ↦ cmpt 4643 × cxp 5036 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 TopOnctopon 20518 Cn ccn 20838 ×t ctx 21173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-map 7746 df-topgen 15927 df-top 20521 df-bases 20522 df-topon 20523 df-cn 20841 df-cnp 20842 df-tx 21175 |
This theorem is referenced by: cnrehmeo 22560 pcopt 22630 pcopt2 22631 vmcn 26938 dipcn 26959 cvxscon 30479 |
Copyright terms: Public domain | W3C validator |