Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt1k | Structured version Visualization version GIF version |
Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
cnmptk1.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
cnmpt1k.m | ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) |
cnmpt1k.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) |
cnmpt1k.b | ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ^ko 𝐿))) |
cnmpt1k.c | ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cnmpt1k | ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ^ko 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptk1.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | cnmptk1.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) | |
3 | cnmpt1k.a | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) | |
4 | cnf2 20863 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐿)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) | |
5 | 1, 2, 3, 4 | syl3anc 1318 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) |
6 | eqid 2610 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | |
7 | 6 | fmpt 6289 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍 ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑍) |
8 | 5, 7 | sylibr 223 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑍) |
10 | eqidd 2611 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
11 | eqidd 2611 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑧 ∈ 𝑍 ↦ 𝐵) = (𝑧 ∈ 𝑍 ↦ 𝐵)) | |
12 | cnmpt1k.c | . . . 4 ⊢ (𝑧 = 𝐴 → 𝐵 = 𝐶) | |
13 | 9, 10, 11, 12 | fmptcof 6304 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
14 | 13 | mpteq2dva 4672 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶))) |
15 | cnmptk1.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
16 | cnmpt1k.b | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑧 ∈ 𝑍 ↦ 𝐵)) ∈ (𝐾 Cn (𝑀 ^ko 𝐿))) | |
17 | topontop 20541 | . . . . 5 ⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) | |
18 | 2, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ Top) |
19 | cnmpt1k.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑊)) | |
20 | topontop 20541 | . . . . 5 ⊢ (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Top) |
22 | eqid 2610 | . . . . 5 ⊢ (𝑀 ^ko 𝐿) = (𝑀 ^ko 𝐿) | |
23 | 22 | xkotopon 21213 | . . . 4 ⊢ ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀 ^ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀))) |
24 | 18, 21, 23 | syl2anc 691 | . . 3 ⊢ (𝜑 → (𝑀 ^ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀))) |
25 | 21, 3 | xkoco1cn 21270 | . . 3 ⊢ (𝜑 → (𝑤 ∈ (𝐿 Cn 𝑀) ↦ (𝑤 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) ∈ ((𝑀 ^ko 𝐿) Cn (𝑀 ^ko 𝐽))) |
26 | coeq1 5201 | . . 3 ⊢ (𝑤 = (𝑧 ∈ 𝑍 ↦ 𝐵) → (𝑤 ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) | |
27 | 15, 16, 24, 25, 26 | cnmpt11 21276 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ ((𝑧 ∈ 𝑍 ↦ 𝐵) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) ∈ (𝐾 Cn (𝑀 ^ko 𝐽))) |
28 | 14, 27 | eqeltrrd 2689 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ (𝑥 ∈ 𝑋 ↦ 𝐶)) ∈ (𝐾 Cn (𝑀 ^ko 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ↦ cmpt 4643 ∘ ccom 5042 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 Topctop 20517 TopOnctopon 20518 Cn ccn 20838 ^ko cxko 21174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-fin 7845 df-fi 8200 df-rest 15906 df-topgen 15927 df-top 20521 df-bases 20522 df-topon 20523 df-cn 20841 df-cmp 21000 df-xko 21176 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |