Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnindis Structured version   Visualization version   GIF version

Theorem cnindis 20906
 Description: Every function is continuous when the codomain is indiscrete (trivial). (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnindis ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽 Cn {∅, 𝐴}) = (𝐴𝑚 𝑋))

Proof of Theorem cnindis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 4145 . . . . . . 7 (𝑥 ∈ {∅, 𝐴} → (𝑥 = ∅ ∨ 𝑥 = 𝐴))
2 topontop 20541 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
32ad2antrr 758 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → 𝐽 ∈ Top)
4 0opn 20534 . . . . . . . . . 10 (𝐽 ∈ Top → ∅ ∈ 𝐽)
53, 4syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → ∅ ∈ 𝐽)
6 imaeq2 5381 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑓𝑥) = (𝑓 “ ∅))
7 ima0 5400 . . . . . . . . . . 11 (𝑓 “ ∅) = ∅
86, 7syl6eq 2660 . . . . . . . . . 10 (𝑥 = ∅ → (𝑓𝑥) = ∅)
98eleq1d 2672 . . . . . . . . 9 (𝑥 = ∅ → ((𝑓𝑥) ∈ 𝐽 ↔ ∅ ∈ 𝐽))
105, 9syl5ibrcom 236 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑥 = ∅ → (𝑓𝑥) ∈ 𝐽))
11 fimacnv 6255 . . . . . . . . . . 11 (𝑓:𝑋𝐴 → (𝑓𝐴) = 𝑋)
1211adantl 481 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑓𝐴) = 𝑋)
13 toponmax 20543 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1413ad2antrr 758 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → 𝑋𝐽)
1512, 14eqeltrd 2688 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑓𝐴) ∈ 𝐽)
16 imaeq2 5381 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑓𝑥) = (𝑓𝐴))
1716eleq1d 2672 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑓𝑥) ∈ 𝐽 ↔ (𝑓𝐴) ∈ 𝐽))
1815, 17syl5ibrcom 236 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑥 = 𝐴 → (𝑓𝑥) ∈ 𝐽))
1910, 18jaod 394 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) → (𝑓𝑥) ∈ 𝐽))
201, 19syl5 33 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → (𝑥 ∈ {∅, 𝐴} → (𝑓𝑥) ∈ 𝐽))
2120ralrimiv 2948 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) ∧ 𝑓:𝑋𝐴) → ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)
2221ex 449 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓:𝑋𝐴 → ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽))
2322pm4.71d 664 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓:𝑋𝐴 ↔ (𝑓:𝑋𝐴 ∧ ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)))
24 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
25 elmapg 7757 . . . 4 ((𝐴𝑉𝑋𝐽) → (𝑓 ∈ (𝐴𝑚 𝑋) ↔ 𝑓:𝑋𝐴))
2624, 13, 25syl2anr 494 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓 ∈ (𝐴𝑚 𝑋) ↔ 𝑓:𝑋𝐴))
27 indistopon 20615 . . . 4 (𝐴𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴))
28 iscn 20849 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ {∅, 𝐴} ∈ (TopOn‘𝐴)) → (𝑓 ∈ (𝐽 Cn {∅, 𝐴}) ↔ (𝑓:𝑋𝐴 ∧ ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)))
2927, 28sylan2 490 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓 ∈ (𝐽 Cn {∅, 𝐴}) ↔ (𝑓:𝑋𝐴 ∧ ∀𝑥 ∈ {∅, 𝐴} (𝑓𝑥) ∈ 𝐽)))
3023, 26, 293bitr4rd 300 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝑓 ∈ (𝐽 Cn {∅, 𝐴}) ↔ 𝑓 ∈ (𝐴𝑚 𝑋)))
3130eqrdv 2608 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽 Cn {∅, 𝐴}) = (𝐴𝑚 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∅c0 3874  {cpr 4127  ◡ccnv 5037   “ cima 5041  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Topctop 20517  TopOnctopon 20518   Cn ccn 20838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-top 20521  df-topon 20523  df-cn 20841 This theorem is referenced by:  indishmph  21411  indistgp  21714  indispcon  30470
 Copyright terms: Public domain W3C validator