MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncongr2 Structured version   Visualization version   GIF version

Theorem cncongr2 15220
Description: The other direction of the bicondition in cncongr 15221. (Contributed by AV, 11-Jul-2021.)
Assertion
Ref Expression
cncongr2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))

Proof of Theorem cncongr2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 zcn 11259 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
21mul01d 10114 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 · 0) = 0)
323ad2ant1 1075 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) = 0)
4 zcn 11259 . . . . . . . . . 10 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
54mul01d 10114 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵 · 0) = 0)
653ad2ant2 1076 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 0) = 0)
73, 6eqtr4d 2647 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) = (𝐵 · 0))
87adantr 480 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 0) = (𝐵 · 0))
98oveq1d 6564 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
109adantr 480 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
11 oveq2 6557 . . . . . 6 (𝐶 = 0 → (𝐴 · 𝐶) = (𝐴 · 0))
1211oveq1d 6564 . . . . 5 (𝐶 = 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐴 · 0) mod 𝑁))
13 oveq2 6557 . . . . . 6 (𝐶 = 0 → (𝐵 · 𝐶) = (𝐵 · 0))
1413oveq1d 6564 . . . . 5 (𝐶 = 0 → ((𝐵 · 𝐶) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
1512, 14eqeq12d 2625 . . . 4 (𝐶 = 0 → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁)))
1610, 15syl5ibr 235 . . 3 (𝐶 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
17 oveq2 6557 . . . . . . . . . 10 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐴 mod 𝑀) = (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))))
18 oveq2 6557 . . . . . . . . . 10 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐵 mod 𝑀) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))))
1917, 18eqeq12d 2625 . . . . . . . . 9 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
2019adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
2120adantl 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
22 simpl 472 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℕ)
23 simp3 1056 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
24 divgcdnnr 15075 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
2522, 23, 24syl2anr 494 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
26 simpl1 1057 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐴 ∈ ℤ)
27 simpl2 1058 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐵 ∈ ℤ)
28 moddvds 14829 . . . . . . . 8 (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵)))
2925, 26, 27, 28syl3anc 1318 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵)))
3025nnzd 11357 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
31 zsubcl 11296 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
32313adant3 1074 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
3332adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴𝐵) ∈ ℤ)
3430, 33jca 553 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
35 divides 14823 . . . . . . . 8 (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
3634, 35syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
3721, 29, 363bitrd 293 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
38 simpr 476 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
3930adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
4039adantr 480 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
4138, 40zmulcld 11364 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℤ)
4241zcnd 11359 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℂ)
4331zcnd 11359 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
44433adant3 1074 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
4544ad3antrrr 762 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
4623zcnd 11359 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
4746ad3antrrr 762 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℂ)
48 simpr 476 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → 𝐶 ≠ 0)
4948adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ≠ 0)
5042, 45, 47, 49mulcan2d 10540 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴𝐵) · 𝐶) ↔ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
51 zcn 11259 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
52 subdir 10343 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
531, 4, 51, 52syl3an 1360 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
5453ad3antrrr 762 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
5554eqeq2d 2620 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴𝐵) · 𝐶) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
5650, 55bitr3d 269 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
57 nnz 11276 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
59 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
6059zcnd 11359 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
6160adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
6246adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝐶 ∈ ℂ)
63 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ)
6463nnzd 11357 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
6523, 64anim12i 588 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ))
66 gcdcl 15066 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℕ0)
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℕ0)
6867nn0cnd 11230 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
69 nnne0 10930 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
7069neneqd 2787 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
7170adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → ¬ 𝑁 = 0)
7271adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬ 𝑁 = 0)
7372intnand 953 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
74 gcdeq0 15076 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0)))
7565, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0)))
7675necon3abid 2818 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) ≠ 0 ↔ ¬ (𝐶 = 0 ∧ 𝑁 = 0)))
7773, 76mpbird 246 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ≠ 0)
7861, 62, 68, 77divassd 10715 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) = (𝑘 · (𝐶 / (𝐶 gcd 𝑁))))
7959adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
8057, 69jca 553 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
8180adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
8223, 81anim12i 588 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)))
83 3anass 1035 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ↔ (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)))
8482, 83sylibr 223 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
85 divgcdz 15071 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ)
8684, 85syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ)
8779, 86zmulcld 11364 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝐶 / (𝐶 gcd 𝑁))) ∈ ℤ)
8878, 87eqeltrd 2688 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ)
89 dvdsmul1 14841 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
9058, 88, 89syl2an2 871 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
9163nncnd 10913 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ)
9291adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∈ ℂ)
93 divmulasscom 10588 . . . . . . . . . . . . . . . . . . 19 (((𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐶 gcd 𝑁) ∈ ℂ ∧ (𝐶 gcd 𝑁) ≠ 0)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
9461, 92, 62, 68, 77, 93syl32anc 1326 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
9590, 94breqtrrd 4611 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))
9695exp32 629 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑁 ∈ ℕ → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))))
9796adantrd 483 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))))
9897imp 444 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))
9998adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))
10099imp 444 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))
101 breq2 4587 . . . . . . . . . . . 12 (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
102100, 101syl5ibcom 234 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
10356, 102sylbid 229 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
104103rexlimdva 3013 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
10522adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℕ)
106 zmulcl 11303 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
1071063adant2 1073 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
108107adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 𝐶) ∈ ℤ)
109 zmulcl 11303 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
1101093adant1 1072 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
111110adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐵 · 𝐶) ∈ ℤ)
112 moddvds 14829 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 · 𝐶) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
113105, 108, 111, 112syl3anc 1318 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
114113adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
115104, 114sylibrd 248 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
116115ex 449 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 ≠ 0 → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
117116com23 84 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
11837, 117sylbid 229 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
119118imp 444 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
120119com12 32 . . 3 (𝐶 ≠ 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
12116, 120pm2.61ine 2865 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))
122121ex 449 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4583  (class class class)co 6549  cc 9813  0cc0 9815   · cmul 9820  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  cz 11254   mod cmo 12530  cdvds 14821   gcd cgcd 15054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055
This theorem is referenced by:  cncongr  15221
  Copyright terms: Public domain W3C validator