Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnbl0 Structured version   Visualization version   GIF version

Theorem cnbl0 22387
 Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnbl0 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅))

Proof of Theorem cnbl0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 abscl 13866 . . . . . . . . 9 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
2 absge0 13875 . . . . . . . . 9 (𝑥 ∈ ℂ → 0 ≤ (abs‘𝑥))
31, 2jca 553 . . . . . . . 8 (𝑥 ∈ ℂ → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)))
43adantl 481 . . . . . . 7 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)))
54biantrurd 528 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) < 𝑅 ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅)))
6 df-3an 1033 . . . . . 6 (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (abs‘𝑥) < 𝑅))
75, 6syl6rbbr 278 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅) ↔ (abs‘𝑥) < 𝑅))
8 0re 9919 . . . . . 6 0 ∈ ℝ
9 simpl 472 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → 𝑅 ∈ ℝ*)
10 elico2 12108 . . . . . 6 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅)))
118, 9, 10sylancr 694 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ ((abs‘𝑥) ∈ ℝ ∧ 0 ≤ (abs‘𝑥) ∧ (abs‘𝑥) < 𝑅)))
12 0cn 9911 . . . . . . . . 9 0 ∈ ℂ
13 cnblcld.1 . . . . . . . . . . 11 𝐷 = (abs ∘ − )
1413cnmetdval 22384 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(0 − 𝑥)))
15 abssub 13914 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(0 − 𝑥)) = (abs‘(𝑥 − 0)))
1614, 15eqtrd 2644 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
1712, 16mpan 702 . . . . . . . 8 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘(𝑥 − 0)))
18 subid1 10180 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥)
1918fveq2d 6107 . . . . . . . 8 (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥))
2017, 19eqtrd 2644 . . . . . . 7 (𝑥 ∈ ℂ → (0𝐷𝑥) = (abs‘𝑥))
2120adantl 481 . . . . . 6 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → (0𝐷𝑥) = (abs‘𝑥))
2221breq1d 4593 . . . . 5 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((0𝐷𝑥) < 𝑅 ↔ (abs‘𝑥) < 𝑅))
237, 11, 223bitr4d 299 . . . 4 ((𝑅 ∈ ℝ*𝑥 ∈ ℂ) → ((abs‘𝑥) ∈ (0[,)𝑅) ↔ (0𝐷𝑥) < 𝑅))
2423pm5.32da 671 . . 3 (𝑅 ∈ ℝ* → ((𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
25 absf 13925 . . . . 5 abs:ℂ⟶ℝ
26 ffn 5958 . . . . 5 (abs:ℂ⟶ℝ → abs Fn ℂ)
2725, 26ax-mp 5 . . . 4 abs Fn ℂ
28 elpreima 6245 . . . 4 (abs Fn ℂ → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅))))
2927, 28mp1i 13 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ (𝑥 ∈ ℂ ∧ (abs‘𝑥) ∈ (0[,)𝑅))))
30 cnxmet 22386 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
3113, 30eqeltri 2684 . . . 4 𝐷 ∈ (∞Met‘ℂ)
32 elbl 22003 . . . 4 ((𝐷 ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
3331, 12, 32mp3an12 1406 . . 3 (𝑅 ∈ ℝ* → (𝑥 ∈ (0(ball‘𝐷)𝑅) ↔ (𝑥 ∈ ℂ ∧ (0𝐷𝑥) < 𝑅)))
3424, 29, 333bitr4d 299 . 2 (𝑅 ∈ ℝ* → (𝑥 ∈ (abs “ (0[,)𝑅)) ↔ 𝑥 ∈ (0(ball‘𝐷)𝑅)))
3534eqrdv 2608 1 (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ◡ccnv 5037   “ cima 5041   ∘ ccom 5042   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145  [,)cico 12048  abscabs 13822  ∞Metcxmt 19552  ballcbl 19554 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562 This theorem is referenced by:  psercnlem2  23982  efopnlem1  24202  binomcxplemdvbinom  37574  binomcxplemnotnn0  37577
 Copyright terms: Public domain W3C validator