MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddabl Structured version   Visualization version   GIF version

Theorem cnaddabl 18095
Description: The complex numbers are an Abelian group under addition. This version of cnaddablx 18094 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 19587. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnaddabl.g 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
cnaddabl 𝐺 ∈ Abel

Proof of Theorem cnaddabl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 9896 . . . 4 ℂ ∈ V
2 cnaddabl.g . . . . 5 𝐺 = {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩}
32grpbase 15816 . . . 4 (ℂ ∈ V → ℂ = (Base‘𝐺))
41, 3ax-mp 5 . . 3 ℂ = (Base‘𝐺)
5 addex 11706 . . . 4 + ∈ V
62grpplusg 15817 . . . 4 ( + ∈ V → + = (+g𝐺))
75, 6ax-mp 5 . . 3 + = (+g𝐺)
8 addcl 9897 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
9 addass 9902 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
10 0cn 9911 . . 3 0 ∈ ℂ
11 addid2 10098 . . 3 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
12 negcl 10160 . . 3 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
13 addcom 10101 . . . . 5 ((𝑥 ∈ ℂ ∧ -𝑥 ∈ ℂ) → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
1412, 13mpdan 699 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = (-𝑥 + 𝑥))
15 negid 10207 . . . 4 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1614, 15eqtr3d 2646 . . 3 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
174, 7, 8, 9, 10, 11, 12, 16isgrpi 17268 . 2 𝐺 ∈ Grp
18 addcom 10101 . 2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
1917, 4, 7, 18isabli 18030 1 𝐺 ∈ Abel
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  Vcvv 3173  {cpr 4127  cop 4131  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818  -cneg 10146  ndxcnx 15692  Basecbs 15695  +gcplusg 15768  Abelcabl 18017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-cmn 18018  df-abl 18019
This theorem is referenced by:  cnaddinv  18097  cnaddcom  33277
  Copyright terms: Public domain W3C validator