Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtfvalN Structured version   Visualization version   GIF version

Theorem cmtfvalN 33515
Description: Value of commutes relation. (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b 𝐵 = (Base‘𝐾)
cmtfval.j = (join‘𝐾)
cmtfval.m = (meet‘𝐾)
cmtfval.o = (oc‘𝐾)
cmtfval.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtfvalN (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem cmtfvalN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐾𝐴𝐾 ∈ V)
2 cmtfval.c . . 3 𝐶 = (cm‘𝐾)
3 fveq2 6103 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 cmtfval.b . . . . . . . 8 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2662 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65eleq2d 2673 . . . . . 6 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝) ↔ 𝑥𝐵))
75eleq2d 2673 . . . . . 6 (𝑝 = 𝐾 → (𝑦 ∈ (Base‘𝑝) ↔ 𝑦𝐵))
8 fveq2 6103 . . . . . . . . 9 (𝑝 = 𝐾 → (join‘𝑝) = (join‘𝐾))
9 cmtfval.j . . . . . . . . 9 = (join‘𝐾)
108, 9syl6eqr 2662 . . . . . . . 8 (𝑝 = 𝐾 → (join‘𝑝) = )
11 fveq2 6103 . . . . . . . . . 10 (𝑝 = 𝐾 → (meet‘𝑝) = (meet‘𝐾))
12 cmtfval.m . . . . . . . . . 10 = (meet‘𝐾)
1311, 12syl6eqr 2662 . . . . . . . . 9 (𝑝 = 𝐾 → (meet‘𝑝) = )
1413oveqd 6566 . . . . . . . 8 (𝑝 = 𝐾 → (𝑥(meet‘𝑝)𝑦) = (𝑥 𝑦))
15 eqidd 2611 . . . . . . . . 9 (𝑝 = 𝐾𝑥 = 𝑥)
16 fveq2 6103 . . . . . . . . . . 11 (𝑝 = 𝐾 → (oc‘𝑝) = (oc‘𝐾))
17 cmtfval.o . . . . . . . . . . 11 = (oc‘𝐾)
1816, 17syl6eqr 2662 . . . . . . . . . 10 (𝑝 = 𝐾 → (oc‘𝑝) = )
1918fveq1d 6105 . . . . . . . . 9 (𝑝 = 𝐾 → ((oc‘𝑝)‘𝑦) = ( 𝑦))
2013, 15, 19oveq123d 6570 . . . . . . . 8 (𝑝 = 𝐾 → (𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)) = (𝑥 ( 𝑦)))
2110, 14, 20oveq123d 6570 . . . . . . 7 (𝑝 = 𝐾 → ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) = ((𝑥 𝑦) (𝑥 ( 𝑦))))
2221eqeq2d 2620 . . . . . 6 (𝑝 = 𝐾 → (𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) ↔ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))))
236, 7, 223anbi123d 1391 . . . . 5 (𝑝 = 𝐾 → ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)))) ↔ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))))
2423opabbidv 4648 . . . 4 (𝑝 = 𝐾 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
25 df-cmtN 33482 . . . 4 cm = (𝑝 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))})
26 df-3an 1033 . . . . . 6 ((𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))))
2726opabbii 4649 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}
28 fvex 6113 . . . . . . . 8 (Base‘𝐾) ∈ V
294, 28eqeltri 2684 . . . . . . 7 𝐵 ∈ V
3029, 29xpex 6860 . . . . . 6 (𝐵 × 𝐵) ∈ V
31 opabssxp 5116 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ⊆ (𝐵 × 𝐵)
3230, 31ssexi 4731 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ∈ V
3327, 32eqeltri 2684 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ∈ V
3424, 25, 33fvmpt 6191 . . 3 (𝐾 ∈ V → (cm‘𝐾) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
352, 34syl5eq 2656 . 2 (𝐾 ∈ V → 𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
361, 35syl 17 1 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  {copab 4642   × cxp 5036  cfv 5804  (class class class)co 6549  Basecbs 15695  occoc 15776  joincjn 16767  meetcmee 16768  cmccmtN 33478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-cmtN 33482
This theorem is referenced by:  cmtvalN  33516
  Copyright terms: Public domain W3C validator