Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clwwlksn2 Structured version   Visualization version   GIF version

Theorem clwwlksn2 41217
 Description: A closed walk of length 2 represented as word is a word consisting of 2 symbols representing (not necessarily different) vertices connected by (at least) one edge. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Apr-2021.)
Assertion
Ref Expression
clwwlksn2 (𝑊 ∈ (2 ClWWalkSN 𝐺) ↔ ((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))

Proof of Theorem clwwlksn2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn 11062 . . 3 2 ∈ ℕ
2 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2610 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3isclwwlksnx 41197 . . 3 (2 ∈ ℕ → (𝑊 ∈ (2 ClWWalkSN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 2)))
51, 4ax-mp 5 . 2 (𝑊 ∈ (2 ClWWalkSN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 2))
6 3anass 1035 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
7 oveq1 6556 . . . . . . . . . . . . 13 ((#‘𝑊) = 2 → ((#‘𝑊) − 1) = (2 − 1))
8 2m1e1 11012 . . . . . . . . . . . . 13 (2 − 1) = 1
97, 8syl6eq 2660 . . . . . . . . . . . 12 ((#‘𝑊) = 2 → ((#‘𝑊) − 1) = 1)
109oveq2d 6565 . . . . . . . . . . 11 ((#‘𝑊) = 2 → (0..^((#‘𝑊) − 1)) = (0..^1))
11 fzo01 12417 . . . . . . . . . . 11 (0..^1) = {0}
1210, 11syl6eq 2660 . . . . . . . . . 10 ((#‘𝑊) = 2 → (0..^((#‘𝑊) − 1)) = {0})
1312adantr 480 . . . . . . . . 9 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (0..^((#‘𝑊) − 1)) = {0})
1413raleqdv 3121 . . . . . . . 8 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
15 c0ex 9913 . . . . . . . . 9 0 ∈ V
16 fveq2 6103 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
17 oveq1 6556 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
18 0p1e1 11009 . . . . . . . . . . . . 13 (0 + 1) = 1
1917, 18syl6eq 2660 . . . . . . . . . . . 12 (𝑖 = 0 → (𝑖 + 1) = 1)
2019fveq2d 6107 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊‘(𝑖 + 1)) = (𝑊‘1))
2116, 20preq12d 4220 . . . . . . . . . 10 (𝑖 = 0 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)})
2221eleq1d 2672 . . . . . . . . 9 (𝑖 = 0 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2315, 22ralsn 4169 . . . . . . . 8 (∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
2414, 23syl6bb 275 . . . . . . 7 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
25 prcom 4211 . . . . . . . . 9 {( lastS ‘𝑊), (𝑊‘0)} = {(𝑊‘0), ( lastS ‘𝑊)}
26 lsw 13204 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1)))
279fveq2d 6107 . . . . . . . . . . 11 ((#‘𝑊) = 2 → (𝑊‘((#‘𝑊) − 1)) = (𝑊‘1))
2826, 27sylan9eqr 2666 . . . . . . . . . 10 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ( lastS ‘𝑊) = (𝑊‘1))
2928preq2d 4219 . . . . . . . . 9 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(𝑊‘0), ( lastS ‘𝑊)} = {(𝑊‘0), (𝑊‘1)})
3025, 29syl5eq 2656 . . . . . . . 8 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {( lastS ‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘1)})
3130eleq1d 2672 . . . . . . 7 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ({( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
3224, 31anbi12d 743 . . . . . 6 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
33 anidm 674 . . . . . 6 (({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
3432, 33syl6bb 275 . . . . 5 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
3534pm5.32da 671 . . . 4 ((#‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
366, 35syl5bb 271 . . 3 ((#‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
3736pm5.32ri 668 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 2) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 2))
38 3anass 1035 . . 3 (((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ ((#‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
39 ancom 465 . . 3 (((#‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 2))
4038, 39bitr2i 264 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 2) ↔ ((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
415, 37, 403bitri 285 1 (𝑊 ∈ (2 ClWWalkSN 𝐺) ↔ ((#‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {csn 4125  {cpr 4127  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145  ℕcn 10897  2c2 10947  ..^cfzo 12334  #chash 12979  Word cword 13146   lastS clsw 13147  Vtxcvtx 25673  Edgcedga 25792   ClWWalkSN cclwwlksn 41184 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-clwwlks 41185  df-clwwlksn 41186 This theorem is referenced by:  av-numclwwlkovf2  41515
 Copyright terms: Public domain W3C validator